13.1 Right Triangle Trigonometry Notes

Using these sides, you can define six trigonometric functions: sine, cosine, tangent, cosecant, secant, and cotangent. These functions are abbreviated sin, cos, tan, csc, sec, and cot, respectively.

KEY CONCEPT

Trigonometric Functions

If θ is the measure of an acute angle of a right triangle, opp is the measure of the leg opposite θ , adj is the measure of the leg adjacent to θ , and hyp is the measure of the hypotenuse, then the following are true.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$
 $\cos \theta = \frac{\text{adj}}{\text{hyp}}$

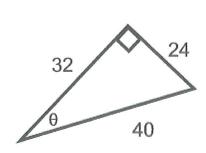
$$\cos \theta = \frac{\text{adj}}{\text{hyp}}$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$

$$\csc \theta = \frac{\text{hyp}}{\text{opp}}$$

$$\csc \theta = \frac{\text{hyp}}{\text{opp}}$$
 $\sec \theta = \frac{\text{hyp}}{\text{adj}}$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$


Notice that the sine, cosine, and tangent functions are reciprocals of the cosecant, secant, and cotangent functions, respectively. Thus, the following are also true.

$$\csc \theta = \frac{1}{\sin \theta}$$

$$\csc \theta = \frac{1}{\sin \theta}$$
 $\sec \theta = \frac{1}{\cos \theta}$ $\cot \theta = \frac{1}{\tan \theta}$

$$\cot \theta = \frac{1}{\tan \theta}$$

Ex1 Find the 6 trigonometric ratios.

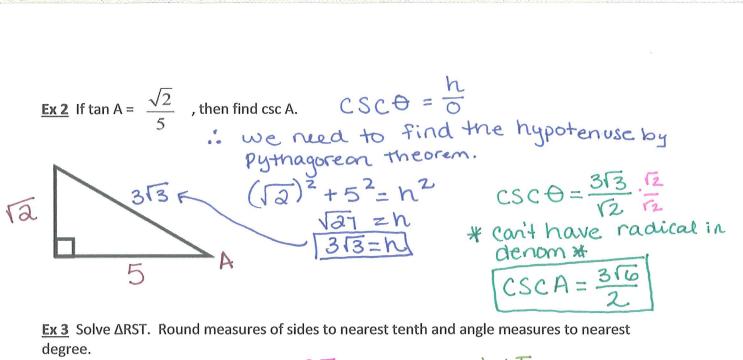
$$Sin\theta = \frac{3}{5}$$

$$\cos\theta = \frac{32}{40}$$

$$\tan \theta = \frac{24}{32}$$

$$\tan \theta = \frac{3}{4}$$

$$CSC\theta = \frac{5}{3}$$


$$\cot \theta = \frac{32}{24}$$

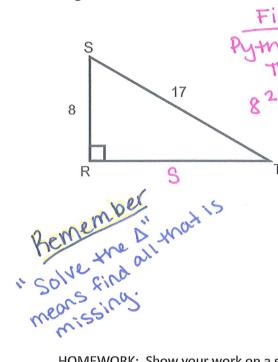
$$\cot \theta = \frac{4}{3}$$

$$\cot \theta = \frac{4}{3}$$

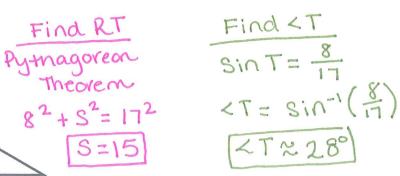
Ex 2 If
$$\tan A = \frac{\sqrt{2}}{5}$$

$$CSC\theta = \frac{h}{0}$$

$$(\sqrt{a})^2 + 5^2 = h^2$$


$$\sqrt{a_1} = h$$

$$\sqrt{3}\sqrt{3} = h$$


$$CSC\Theta = \frac{3\sqrt{3}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$$

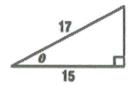
$$CSCA = \frac{376}{2}$$

degree.

Pytnagoreon
Theorem
$$8^2 + S^2 = 17^2$$

 $S = 15$

Find
$$< S$$


$$COS S = \frac{8}{17}$$

$$< S = COS^{-1}(\frac{8}{17})$$

$$< S \approx 62^{\circ}$$

HOMEWORK: Show your work on a separate paper.

1. Find the values of the six trigonometric functions for angle θ .

2. Standardized Test Practice If $\sin A = \frac{7}{10}$, find the value of $\cos A$.

A.
$$\frac{7\sqrt{149}}{149}$$
 B. $\frac{\sqrt{51}}{10}$ C. $\frac{10}{7}$

B.
$$\frac{\sqrt{51}}{10}$$

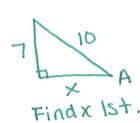
C.
$$\frac{10}{7}$$

D.
$$\frac{\sqrt{51}}{7}$$

3. Solve $\triangle ABC$ if $A=20^{\circ}$, $C=90^{\circ}$, and b=10. Round measures of sides to the nearest tenth and measures of angles to the nearest degree.

Homework 13.1 (ACC Greometry)

1.) Find the values of the six trig functions for angle 0.


$$\begin{array}{c|c}
\hline
Sin\theta = \frac{8}{17} & CSC\theta = \frac{17}{8} & COS\theta = \frac{15}{15} & Sec\theta = \frac{17}{15}
\end{array}$$

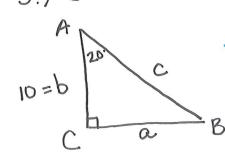
$$\cos\Theta = \frac{10}{17}$$

$$tan\theta = \frac{8}{15}$$

$$cot\theta = \frac{15}{8}$$

$$\cot \theta = \frac{15}{8}$$

2.) If sin A= To, find the value of CUSA.



$$7^{2} + x^{2} = 10^{2}$$

 $X = \sqrt{51}$

$$7 = \frac{10}{10} = \frac{7^2 + x^2 = 10^2}{x = \sqrt{51}}$$

$$(\cos A) = \frac{\sqrt{51}}{10}$$

3.) Solve DABC if <A=20', <C=90' and b=10.

Find
$$\angle B$$

Find a
 Δsum
 $A sum$

[a 23.6 units]

$$\frac{\text{Find C}}{\cos 20 = \frac{10}{C}}$$

