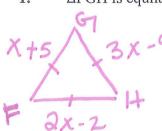
Name: _	Key


Hour:

4.1 & 4.2 (Triangle Basics) 5.2 & 5.4 (Triangle Inequality)

4.1 Warm-Up:

Directions: Find x and the measure of each side of the triangle.

 Δ FGH is equilateral with FG = x + 5, GH = 3x - 9, and FH = 2x - 2.

Find x and the measure of each side of the triangle.

GH is equilateral with
$$FG = x + 5$$
, $GH = 3x - 9$, and $FH = 2x - 2$.

$$FG \cong GH$$

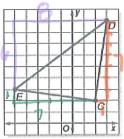
$$X = \frac{12}{17 = x}$$

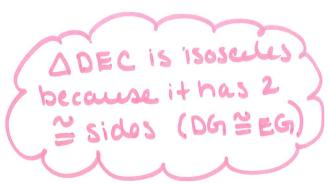
$$GH = \frac{12}{12}$$

- 4.1 Warm-Up:
- 2. Find x and the measure of each side of isosceles triangle EFG.

EF = FG def of isoscules

$$4x = 2x + 6$$





- 4.1 Warm-Up:
- 3. COORDINATE GEOMETRY Find the measures of the sides of $\triangle DEC$. Classify the triangle by sides.

Use the Distance Formula to find the lengths of

each side.

5.4 Warm-Up:

4. If two of the sides of a triangle are 15 and 42, what is the range of possible values for the third side?

$$\frac{27}{1} < X < \frac{57}{1}$$

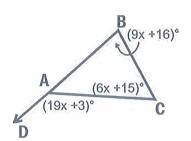
$$X+15=42$$

$$Smallest$$

$$X is the largest$$

5.4 Warm-Up:

5. Determine whether a triangle can be formed by the given set of side lengths is 8ft, 12ft, 3ft. Explain why or why not.



Name:		D	ate:	Hour:
The angle forme	f Isosceles Triangles ed by these sides is called ou can prove a theorem a	the vertex angle.	The other two	angles are called
those sides are	a triangle are congruent e congruent. (Isosceles I of a triangle are congruer re congruent.	Triangle Theorem)	oosite If Ā	A C $B \cong \overline{CB}$, then $\angle A \cong \angle C$. $A \cong \angle C$, then $\overline{AB} \cong \overline{CB}$.
EX1. ΔLMN is isos	sceles, <l angle<="" is="" td="" the="" vertex=""><td>1 + 1 = 3x - 2, LN = 2x</td><td>x + 1, and MN</td><td>= 5x - 2.</td></l>	1 + 1 = 3x - 2, LN = 2x	x + 1, and MN	= 5x - 2.
1	LM2LN +1 3x-2=2x+1	olef of	X=	LM=
2 × +2×	+\3x-2=2x+1 X=5	1208611620	LN=	MN= 13
1 5x-2 N				
EX2. Find x. Q	R=20 base Li Osare P+2Q+2R=180	S of 1505C. EX3	. Find x. If B ∠ C ≃	C≅BA. <a a="" bases="" iso.="" of="" one="" td="" ≥<="">
	10+2x+2x=180 40+4x=180	C	B	$\frac{15 = 5x - 10}{15 = x}$
	4x = 140 $x = 35$	Α' '	$0x - 10)^{9}$	
EX4. Find x.		EX5	Find x. Giv	UN < GIBD + < BOG
K K $T (6x + 6)^{\circ}$	bouse Ls of isos	G 30°	$\sqrt{3}x^{\circ}$	$\langle C_1BD = \langle C_2BD \rangle \rangle$ $\langle C_2C_2C_2C_2C_2C_2C_2C_2C_2C_2C_2C_2C_2C$
YPKQ ZY	KD Vertical 230 Δ Sum	NE E	D '	20 = X
x+10+10x+10t	2x = 180 180 x = 12			

Name:	Date:	Hour:
Trainer		

4.2 Angle Example:

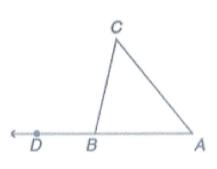
Exterior Angle Theorem: The measure of the exterior angle is the sum of the measures of the remote interior <B+<C=<CAD Ext. L Thm. angles.

4.2 Proof that the Exterior Angle Theorem WORKS!

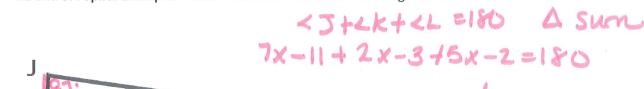
Given: AABC

Prove: $\langle A + \langle C = \langle DBC \rangle$

2. <A+<ABC+<C = 180


3. < DBC+ < ABC = 180.

3. < DBC+ < ABC = 180.


3. linear pairs
a. < A+ < ABC+ < C= < DBC+ < ABC
4. Subs.

5. KA+LC = KDBC

5. Subt.

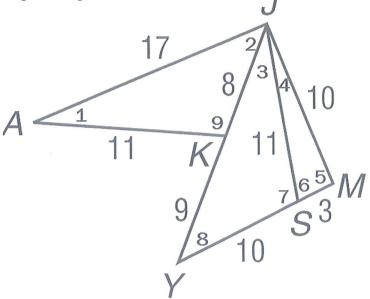
4.2 and 5.4 Spiral Example: List the sides in order from least to greatest.

posite the greatest 2 15 e greatest side.

5.2 Side Angle Theorem Practice: Opposite the greatest angle is the greatest side

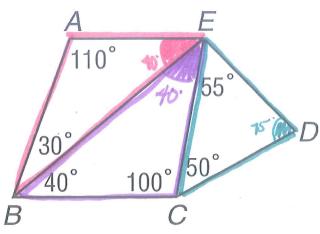
1.) For ΔAKJ list the angles from least to greatest.

2.) For $\triangle JYM$ list the angles from greatest to least.



3.) What is the smallest angle in ΔJMS ?

4.) What is the greatest angle in ΔJSY ?



5.) Find m<AEB. 40

6.) Find m<CEB.

7.) Find m<CDE. **75**

8.) List the sides of $\triangle ABE$ in order from greatest to least.

9.) What is the greatest side of $\triangle CDE$?

10.) List the sides of $\triangle BCE$ in order from least to greatest.

BC = EC 4 EB