A	-		2212		
Acc	G	90	m	et	rγ

4.1 & 4.2 Practice 2020

Warm-Up:

4.1 Warm-Up:

Directions: Find x and the measure of each side of the triangle.

 Δ FGH is equilateral with FG = x + 5, GH = 3x - 9, and FH = 2x - 2.

$$7 = 3x - 9$$

$$X = \frac{1}{12}$$

- 4.1 Warm-Up:
- 2. Find x and the measure of each side of isosceles triangle EFG.

$$EF \cong FG$$
 def of isosceles Δ
 $4x = 2x + 6$
 $X = 3$
 $EG = 14$

- 4.1 Warm-Up:
- 3. COORDINATE GEOMETRY Find the measures of the sides of $\triangle DEC$. Classify the triangle by sides.

Use the Distance Formula to find the lengths of each side.

$$6^2 + 8^2 = ED^2$$

ECZCD ..

Isosceles by def (2° sides)

- 4.2 Angle Example:
- 4. Exterior Angle Theorem: The measure of the exterior angle is the sum of the measures of the remote interior angles.

9x+16+6x+15=19x+3 15x +31=19x+3

4.1 & 4.2 Practice Worksheet 2020 Taken from textbook

- 1. Supply the correct numbers to complete each sentence.
 - a. In an obtuse triangle, there are 2 acute angle(s), O right angle(s), and ____ obtuse angle(s).
 - b. In an acute triangle, there are 3 acute angle(s), o right angle(s), and obtuse angle(s).
 - c. In a right triangle, there are 2 acute angle(s), 1 right angle(s), and O obtuse angle(s).
- 2. Determine whether each statement is always, sometimes, or never true.
 - a. A right triangle is scalene. Sometimes
 - b. An obtuse triangle is isosceles. Sometimes
 - c. An equilateral triangle is a right triangle. Never
 - d. An equilateral triangle is isosceles. aways
 - e. An acute triangle is isosceles. Sometimes
 - f. A scalene triangle is obtuse. Sometimes
- 3. Describe each triangle by as many of the following words as apply: acute, obtuse, right, scalene, isosceles, or equilateral.

acute.

Scalene

obtuse isosceles Right Scalene

Identify the indicated type of triangles.

- 4. right
 - A ABE A EBC

- isosceles
 - A EBD A BOC

6. scalene

DAEB A BCE

7. Find the measure of each side of equilateral $\triangle RST$ with RS = 2x + 2, S and TR = 5x - 4.

RS ≅ ST def of equilateral A

8. Find the measure of each side of isosceles $\triangle ABC$ with AB = BC if AB = 4y,

Find the measures of the sides of $\triangle RST$ and classify each triangle by its sides.

13. R(0, 2), S(2, 5), T(4, 2)

must show k

 $RS = \sqrt{13} \quad ST = \sqrt{13} \quad RT = 4$

Classification: 1565celes be cause RS & ST

14. R(1, 3), S(4, 7), T(5, 4)

Must Show your work

RS = _____ ST = ____ RI = _

_ Classification: $No \cong Sides$...

Find each measure if $m\angle 4 = m\angle 5$.

Find each measure if $m \angle DGF = 53$ and $m\angle AGC = 40$.

- 19. mZ1=37
- 20. m/2= 50'
- 21. mZ3 =50
- 22. m 24=40

HOUSING For Exercises 27-29, use the following information.

The two braces for the roof of a house form triangles. Find each measure.

- 27. mZ1 = 53°
- 28. m/2=129'
- 29. m 23=15+

Exterior Angles

Find the measure of each angle indicated.

1)

Solve for x.

<U+LV=LUTS ext. L

Find the measure of the angle indicated.

3) Find $m \angle G$.

<G+ <H = <GFP ext. < thm

 $\sqrt{1x-12}$ 56°/H $\sqrt{1}$ $\sqrt{12+5}$ = 9x+207x+44 = 9x+20

5 +14x +1+2 K=111 35 x + 6=111

$$35x = 105$$

