ACC: 8.1 GEOMETRIC MEAN NOTES

Geometric Mean When the means of a proportion are the same number, that number is called the geometric mean of the extremes. The **geometric mean** between two numbers is the positive square root of their product.

$$\frac{\text{extreme} \rightarrow \underline{a}}{\text{mean} \rightarrow x} = \frac{x}{b} \leftarrow \frac{\text{mean}}{\text{extreme}}$$

Geometric Mean

FOR YOUR

Words

The geometric mean of two positive numbers a and b is the number x such that $\frac{a}{x} = \frac{x}{b}$. So, $x^2 = ab$ and $x = \sqrt{ab}$.

Example The geometric mean of a = 9 and b = 4 is 6, because $6 = \sqrt{9 \cdot 4}$.

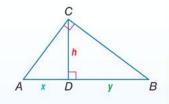
Example #1: Find the geometric mean between 2 and 8.

Example #2: Find the geometric mean between $\sqrt{15}$ and $\sqrt{101}$.

Ex. 3Pythagorean Theorem: Review

Find x.

GEOMETRIC MEAN IN RIGHT TRIANGLES


Geometric Means in Right Triangles In a right triangle, an altitude drawn from the vertex of the right angle to the hypotenuse forms two additional right triangles. These three right triangles share a special relationship.

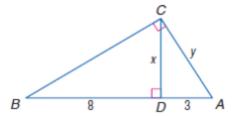
Example 4.

Theorems

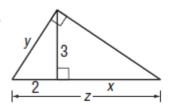
Right Triangle Geometric Mean Theorems

8.2 Geometric Mean (Altitude) Theorem The altitude drawn to the hypotenuse of a right triangle separates the hypotenuse into two segments. The length of this altitude is the geometric mean between the lengths of these two segments.

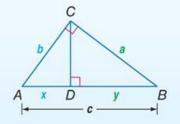
For Your


FOLDABLE

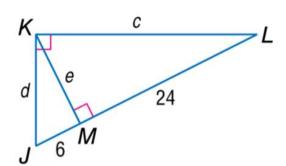
x 3


Example If \overline{CD} is the altitude to hypotenuse \overline{AB}

of right
$$\triangle ABC$$
, then $\frac{x}{h} = \frac{h}{v}$ or $h = \sqrt{xy}$.


Example #5:

Example #6


8.3 Geometric Mean (Leg) Theorem The altitude drawn to the hypotenuse of a right triangle separates the hypotenuse into two segments. The length of a leg of this triangle is the geometric mean between the length of the hypotenuse and the segment of the hypotenuse adjacent to that leg.

Example If \overline{CD} is the altitude to hypotenuse \overline{AB} of right $\triangle ABC$,

then
$$\frac{\mathbf{c}}{\mathbf{b}} = \frac{\mathbf{b}}{\mathbf{x}}$$
 or $\mathbf{b} = \sqrt{\mathbf{x}\mathbf{c}}$ and $\frac{\mathbf{c}}{\mathbf{a}} = \frac{\mathbf{a}}{\mathbf{y}}$ or $\mathbf{a} = \sqrt{\mathbf{y}\mathbf{c}}$.

Example 7.

Example 8.

