Name:

Angles Proofs Notes

Example 1: Theorem - If two angles are supplementary to the same angle, then they are congruent.

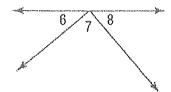
Given: $\angle 3$ and $\angle 4$ are supplementary; $\angle 3$ and $\angle 5$ are supplementary

Prove: $\angle 4 \cong \angle 5$

- 1. <3 and < 4 are supplementary <3 and <5 are supplementary
- $3. \angle 3 + \angle 4 = \angle 3 + \angle 5$

- 1. Given
- 2. Definition of Supplementary
- 4. Subtraction

Prove: If <6 and <8 are complementary, the <7 is a right angle.

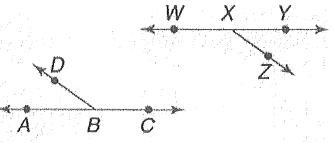


- 1. <6 and < 8 are complementary

- 1. Given
- 3. Definition of Supplementary with Angle Addition

- 6. Definition of a right angle

Given: $\angle ABD \cong \angle YXZ$ Prove: $\angle CBD \cong \angle WXZ$



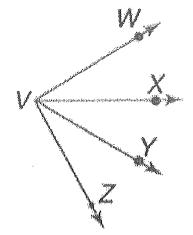
1. $\angle ABD \cong \angle YXZ$

- 1. Given
- 2. _____
- 2. _____
- $3. \angle ABD + \angle CBD = \angle YXZ + \angle WXZ$
- 3. _____
- 4.
- 4. _____
- 5.
- 5. _____

Given: \overrightarrow{VX} bisects $\angle WVY$.

 \overrightarrow{VY} bisects $\angle XVZ$.

Prove: $\angle WVX \cong \angle YVZ$



1.

2.

2. _____

3.

3. _____

Angles Proofs Notes

Example 1: Theorem - If two angles are supplementary to the same angle, then they are congruent.

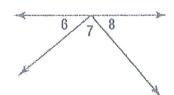
Given: $\angle 3$ and $\angle 4$ are supplementary; $\angle 3$ and $\angle 5$ are supplementary

Prove: $\angle 4 \cong \angle 5$

- 1. <3 and < 4 are supplementary <3 and <5 are supplementary
- 2. <u><3+<4=180</u>°
- $3. \angle 3 + \angle 4 = \angle 3 + \angle 5$
- 4. 4424

- 1. Given
- 2. Definition of Supplementary
- 3. Substitution
- 4. Subtraction

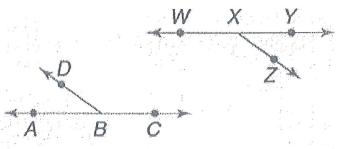
Prove: If <6 and <8 are complementary, the <7 is a right angle.



- 1. <6 and < 8 are complementary
- 2. <6+<8=90
- 3. 46+<7+<8=180°
- 4. <7+90=180'
- 5._____<7 = 90'
- 6. <7 isa Right 4

- 1. Given
- 2. dup of compl.
- 3. Definition of Supplementary with Angle Addition
- 4. Substitution
- 5. Subtraction
- 6. Definition of a right angle

Given: $\angle ABD \cong \angle YXZ$ Prove: $\angle CBD \cong \angle WXZ$



 $1. \angle ABD \cong \angle YXZ$

1. Given

2. <ABD+<DBC=180 <ABD 2. linear pairs are Suppl.

3. $\angle ADB + \angle DBC = \angle YXZ + \angle ZXW$

3. Substitution

4. <ADB+<BBC = LADB+<ZXXW Substitution

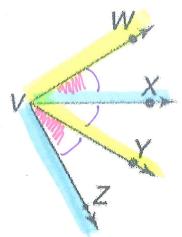
5. < CBD = ZWXZ

5. Subtraction

Given: \overrightarrow{VX} bisects $\angle WVY$.

 \overrightarrow{VY} bisects $\angle XVZ$.

Prove: $\angle WVX \cong \angle YVZ$



1. VX bisect AWVY

VY bisect < XVZ

1. Given

2. def of < bisector.

3. <WVX = ZYVZ

3. Substitution