Angle Relationships Notes Day 2

Quadratics Warm-Up.

Directions: Solve through factoring.

1.
$$0 = 8x^2 - 6x - 9$$
.

$$(x-12)(x+6)=0$$

$$(x-\frac{3}{2})(x+\frac{3}{4})=0$$

$$(2x-3)(4x+3)=0$$

Angle Warm-up:

Find the measure of the following angles.

 $2. 0 = 7x^2 + 22x + 3.$

$$(x+2|)(x+1)=0$$

 $(x+3)(7x+1)=0$

Angle Addition Examples:

1. $\angle EFH$ is adjacent to $\angle HFG$. $\angle EFH = x^{\circ}$, $\angle HFG = x + 20$ and $\angle EFG = 110^{\circ}$. Find x, $m \angle EFH$ and $m \angle HFG$. Draw the figure 1st.

$$X + X + 20 = 110$$

$$2x + 20 = 110$$

$$2x = 90$$

$$x = 45^{\circ}$$

2. \overrightarrow{BA} and \overrightarrow{BC} are opposite rays, which means _____

 \overrightarrow{BF} bisects <CBE and

 \overrightarrow{BD} bisects <ABE. Justify your steps.

What does it mean to bisect an angle? $\underline{\text{Cut}} \leq \text{into } 2 \cong 4$

If m < EBF = 6x + 4 and m < CBF = 7x - 2, find m < EBC.

$$\angle EBF \cong \angle CBF$$

 $6x+4=7x-2$
 $4=x-2$
 $6=x$

def of L bisector

$$\langle EBF + \langle CBF = \langle EBC \rangle$$
 angle addition
 $(6(6)+4+7(6)-2=\langle EBC \rangle$
 $(83°=\langle EBC \rangle)$

3. If $\angle 1 = (x-4)^2$ and $\angle 3 = 9^\circ$, find the possible value(s) of x, $\angle 1$, and $\angle 2$. Note: This figure is not drawn to scale. <1 = 23 Vertical &s are =

 $(X-4)^2 = 9$ (x-4)(x-4)=9(2-4x-4x+16=9

must check WORK

X = 1 $(1-4)^2 = 9$?

(-3)2=9 yes! 9=9 yes! Tinear Dairs are Suppl.

4. If $\angle 1 = x^2 + 2x$ and $\angle 2 = 4x + 140$, find the possible value(s) of x, $\angle 3$, and $\angle 4$. Note: This figure is not drawn to scale.

Check work

$$X = 4$$
 $21 = 4^2 + 2(4) = 24$
 $22 = 4(4) + 140 = 156$
 $24 + 156 = 180 \text{ yes!}$

$$X = -10$$

$$< 1 = (-10)^{2} + 2(-10) = 80^{\circ}$$

$$< 2 = 4(-10) + 140 = 100^{\circ}$$

$$80 + 100 = 180 \text{ yes!}$$

$$<3 \cong <1$$
 vertical <3 are \cong $<3 = 24°$ or $<3 = 80°$ $<4 \cong <2$ vertical <5 are \cong $<4 \cong <2$ vertical <5 are \cong $<4 = 156°$ or $<2 = 100°$

5. $\angle JKM$ is adjacent to $\angle MKL$. $\angle JKL$ is a right angle and $\angle MKL = 55^{\circ}$. Find $m \angle JKM$. Draw the figure 1st.

$$\langle JKL = 90^{\circ} \text{ def of Right} \rangle$$

 $\langle JKM + \langle MKL = \langle JKL \rangle \text{ ongle additus}$
 $\langle JKM = 35^{\circ} \rangle$