ARCS AND CHORDS NOTES (10.3)

10.2

In a circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

Abbreviations:

In \odot , 2 minor arcs are \cong , corr. chords are \cong .

In \odot , 2 chords are \cong , corr. minor arcs are \cong .

Examples:

If $\overline{AB} \cong \overline{CD}$,

 $\widehat{AB} \cong \widehat{CD}$.

If $\widehat{AB} \cong \widehat{CD}$,

 $\overline{AB} \cong \overline{CD}$.

The chords of adjacent arcs can form a poly gon.

Quadrilateral ABCD is an inscribed polygon because all of its vertices lie on the circle.

Circle E is CICCLASCIDED about the polygon because it contains all the vertices of the polygon.

Let's see some examples:

$$8x = 360$$

 $x = 360$
 8
 8

. square

$$2x+x+2x+x = 360$$

$$6x = 360$$

$$x = 60^{\circ}$$

Theorem:

In a circle, if a diameter (or radius) is perpendicular to a chord, then it BISECTS the chord and its arc.

With your shoulder partner, define the word bisect and write it down:

Segment into 2 \(\text{parts}.

1. Find the length of \overline{JM} .

2. Find x.

- to radius or diameter! So Chord HJ is bisected.

Example 3: Given the information below, find CX, OX, XB, and the $m\bar{C}\bar{D}$.

Circle O has a radius of 13 inches. Radius OB is perpendicular to chord CD, which is 24 inches long.

$$CX = \frac{1}{2}2H = 12$$

$$\frac{12}{\sqrt{x}} \times x^{2} + 12^{2} = 13^{2}$$

$$\times x^{2} + 144 = 169$$

$$\times x^{2} = 25$$

 $m\widehat{CBD} =$

Sint=13 +=sin-1(1音)+=67.4°

67.4+67.4

In a circle or in congruent circles, two chords are congruent if and only if they are

equidistant from the Center.

Example 4: Find x.

Example 5: Chords \overline{AC} and \overline{DF} are equidistant from the center. If the radius of Circle G is 26m, find FE, DE, AB and AC.

$$FE = \begin{cases} 2e & x^2 + 10^2 = 26^2 \\ x^2 + 100 = 676 \\ x^2 = 576 \end{cases}$$

$$FE = 24$$

$$DE = 24$$