FOGIS

Vertical Alignment

Before Lesson 10-5

Make conjectures about circles.

Lesson 10-5

Formulate and test conjectures about the properties and attributes of circles and the lines that intersect them based on explorations and concrete models.

After Lesson 10-5

Find areas of circles.

2. Teach

Scaffolding Questions

Have students observe the picture and read the adjacent caption in Get Ready for the Lesson.

Ask:

- What happens to the hammer when the athlete releases it? The hammer flies in a straight line.
- What geometric term represents the location of the release? point of tangency
(continued on the next page)

Lesson 10-5 Resources
Chapter 10 Resource Masters
Lesson Reading Guide, p. 33 (11) ©11
Study Guide and Intervention, pp. 34-35 Skills Practice, p. 36 (B1)
Practice, p. 37 (11) A18
Word Problem Practice, p. 38 (13) (11) Al
Enrichment, p. 39 ©11
Cabri Jr, p. 40 ©
Geometer's Sketchpad, p. 41 © © Al

Tangents

Main Ideas

- Use properties of tangents.
- Solve problems involving circumscribed polygons.

New Vocabulary
tangent point of tangency

In April 2004, Yipsi Moreno of Cuba set the hammer throw record for North America, Central America, and the Carribean with a throw of 75.18 meters in La Habana, Cuba. The hammer is a metal ball, usually weighing 16 pounds, attached to a steel wire at the end of which is a grip. The ball is spun around by the thrower and then released, with the greatest distance thrown winning the event.

Tangents The figure at the right models the hammer throw event. Circle A represents the circular area containing the spinning thrower. Ray $B C$ represents the path the hammer takes when released. $\overrightarrow{B C}$ is
 tangent to $\odot A$, because the line containing $\overrightarrow{B C}$ intersects the circle in exactly one point. This point is called the point of tangency.

GEOMETRY SOFTWARE LAB

Tangents and Radii

MODEL

- Use The Geometer's Sketchpad to draw a circle with center W. Then draw a segment tangent to $\odot W$. Label the point of tangency as X.
- Choose another point on the tangent and name it Y. Draw $\overline{W Y}$.
THINK AND DISCUSS 5. See margin.

1. What is $\overline{W X}$ in relation to the circle? radius
2. Measure $\overline{W Y}$ and $\overline{W X}$. Write a statement to relate $W X$ and $W Y . W X<W Y$
3. Move point Y. How does the location of Y affect the statement you wrote in Exercise 2?
4. It doesn't, unless Y and
5. Measure $\angle W X Y$. What conclusion can you make? $\overline{W X} \perp \overline{W Y}$ X coincide.
6. Make a conjecture about the shortest distance from the center of the circle to a tangent of the circle.

Transparencies

5-Minute Check Transparency 10-5

Additional Print Resources

Noteables ${ }^{\text {TM }}$ Interactive Study Notebook with Foldables ${ }^{\text {™ }}$
Teaching Geometry with Manipulatives

Technology

geometryonline.com
Interactive Classroom CD-ROM
AssignmentWorks CD-ROM
Graphing Calculator Easy Files

The lab suggests that the shortest distance from a tangent to the center of a circle is the radius drawn to the point of tangency. Since the shortest distance from a point to a line is a perpendicular, the radius and the tangent must be perpendicular.

Study Tip

Tangent Lines
All of the theorems applying to tangent lines also apply to parts of the line that are tangent to the circle.
WITOMEM- 10.9
If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.
Example: If $\overleftrightarrow{R T}$ is a tangent, $\overline{O R} \perp \overleftrightarrow{R T}$.
You will prove Theorem 10.9 in Exercise 24.

EXAMPLE 3 Find Lengths

ALGEBRA $\overline{E D}$ is tangent to $\odot F$ at point E. Find x.
Because the radius is perpendicular to the tangent at the point of tangency, $\overline{E F} \perp \overline{D E}$. This makes $\angle D E F$ a right angle and $\triangle D E F$ a right triangle. Use the Pythagorean Theorem to find x.

$$
\begin{aligned}
(E F)^{2}+(D E)^{2} & =(D F)^{2} & & \text { Pythagorean Theorem } \\
3^{2}+4^{2} & =x^{2} & & E F=3, D E=4, D F=x \\
25 & =x^{2} & & \text { Simplify. } \\
\pm 5 & =x & & \text { Take the square root of each side. }
\end{aligned}
$$

Because x is the length of $\overline{D F}$, ignore the negative result. Thus, $x=5$.

/achirem vourproytuss

1A. $\overline{X Z}$ is tangent to $\odot Y$ at point Z. Find $n .2 \sqrt{29} \approx 10.77$

1B. $\overline{B C}$ is tangent to $\odot A$ at point C. Find $x . \quad \sqrt{93} \approx 9.64$

The converse of Theorem 10.9 is also true.

Additional Answer (Geometry Lab)

5. Sample answer: The shortest distance from the center of a circle to the tangent is the radius of the circle, which is perpendicular to the tangent.

- What other situations can be modeled by a circle and a tangent? Sample answers: fishing line unrolling from a spool, the string of a yo-yo, a line of paint being applied to a wall by a roller

Tangents

Examples 1-3 show how to use the theorems of tangents to solve problems involving tangents.

Formative Assessment

Use the Check Your Progress exercises after each example to determine students' understanding of concepts.

ADDITIONAL EXAMPLE

ALGEBRA $\overline{R S}$ is tangent to $\odot Q$ at point R. Find $y .24$

Additional Examples also in:

- Noteables ${ }^{\text {™ }}$ Interactive Study Notebook with Foldables ${ }^{\text {TM }}$
- Interactive Classroom PowerPoint ${ }^{\text {® }}$ Presentations

Geometry Lab

Tell students that since a radius is perpendicular to a tangent at the point of tangency, the diameter containing that radius is also perpendicular to the tangent at the same point. Students can also repeat the activity for other points of tangency. They can start with a new circle, or you can ask students where they could place another tangent on $\odot W$ that is perpendicular to $\overline{W Y}$.

ADDITIONAL EXAMPLE

2 a. Determine whether $\overline{B C}$ is tangent to $\odot A$. no

b. Determine whether $\overline{W E}$ is tangent to $\odot D$. yes

ThitolitM 10.10

If a line is perpendicular to a radius of a circle at its endpoint on the circle, then the line is tangent to the circle.
Example: If $\overline{O R} \perp \overleftrightarrow{R T}, \overleftrightarrow{R T}$ is a tangent.

You will prove this theorem in Exercise 25.

EXAMPLE 9 Identify Tangents

Study Tip

Identifying

 TangentsNever assume that a segment is tangent to a circle by appearance unless told otherwise. The figure must either have a right angle symbol or include the measurements that confirm a right angle.
a. Determine whether $\overline{M N}$ is tangent to $\odot L$. Justify your reasoning.

First determine whether $\triangle L M N$ is a right triangle by using the converse of the Pythagorean Theorem.

$$
\begin{aligned}
(L M)^{2}+(M N)^{2} & \stackrel{?}{=}(L N)^{2} & & \text { Converse of Pythagorean Theorem } \\
3^{2}+4^{2} & \stackrel{?}{=} 5^{2} & & L M=3, M N=4, L N=3+2 \text { or } 5 \\
25 & =25 \checkmark & & \text { Simplify. }
\end{aligned}
$$

Because $3^{2}+4^{2}=5^{2}$, the converse of the Pythagorean Theorem allows us to conclude that $\triangle L M N$ is a right triangle and $\angle L M N$ is a right angle.
Thus, $\overline{L M} \perp \overline{M N}$, making $\overline{M N}$ a tangent to $\odot L$.
b. Determine whether $\overline{P Q}$ is tangent to $\odot R$. Justify your reasoning.

Since $R Q=R S, R P=4+4$ or 8 units.

$$
\begin{array}{rlrl}
(R Q)^{2}+(P Q)^{2} & \xlongequal{=}(R P)^{2} & & \text { Converse of Pythagorean Theorem } \\
4^{2}+5^{2} & \xlongequal{=} 8^{2} & R Q=4, P Q=5, R P=8 \\
41 & \neq 64 & & \text { Simplify. }
\end{array}
$$

Because $R Q^{2}+P Q^{2} \neq R P^{2}, \triangle R Q P$ is not a right triangle.
So, $\overline{P Q}$ is not tangent to $\odot R$.

2A. Determine whether $\overline{G H}$ is tangent to $\odot F$. Justify your reasoning. no, $180 \neq 196$

2B. Determine whether $\overline{K L}$ is tangent to $\odot J$. Justify your reasoning. yes, $289=289$

Personal Tutor at geometryonline.com

More than one line can be tangent to the same circle. In the figure, $\overline{A B}$ and $B C$ are tangent to $\odot D$. So, $(A B)^{2}+(A D)^{2}=(D B)^{2}$ and $(B C)^{2}+(C D)^{2}=(D B)^{2}$.

$(A B)^{2}+(A D)^{2}=(B C)^{2}+(C D)^{2} \quad$ Substitution
$(A B)^{2}+(A D)^{2}=(B C)^{2}+(A D)^{2} \quad A D=C D$

$$
\begin{aligned}
(A B)^{2} & =(B C)^{2} & & \text { Subtract }(A D)^{2} \text { from each side. } \\
A B & =B C & & \text { Take the square root of each side. }
\end{aligned}
$$

The last statement implies that $\overline{A B} \cong \overline{B C}$. This is a proof of Theorem 10.11.

THEOREM 10.11

If two segments from the same exterior point are tangent to a circle, then they are congruent.

Example: $\overline{A B} \cong \overline{A C}$

EXAMPLE 3 Congruent Tangents

ALGEBRA Find x. Assume that segments that appear tangent to circles are tangent.
$\overline{A D}$ and $\overline{A C}$ are drawn from the same exterior point and are tangent to $\odot Q$, so $\overline{A D} \cong \overline{A C} . \overline{A C}$ and $\overline{A B}$ are drawn from the same exterior point and are tangent to $\odot R$, so $\overline{A C} \cong \overline{A B}$. By the Transitive Property, $\overline{A D} \cong \overline{A B}$.

$$
\begin{aligned}
A D & =A B & & \text { Definition of congruent segments } \\
6 x+5 & =-2 x+37 & & \text { Substitution } \\
8 x+5 & =37 & & \text { Add } 2 x \text { to each side. } \\
8 x & =32 & & \text { Subtract } 5 \text { from each side. } \\
x & =4 & & \text { Divide each side by } 8 .
\end{aligned}
$$ intersects a circle, there is never any part of a tangent contained inside a circle. The only point that the tangent and the circle have in common is the point of tangency.

In the construction that follows, you will learn how to construct a line tangent to a circle through a point exterior to the circle.

Circumscribed Polygons

 Polygons can also be circumscribed about a circle. Example 4 shows how to find the perimeter of a triangle using theorems learned in this lesson.
ADDITIONAL EXAMPLE

Triangle $H J K$ is circumscribed about $\odot G$. Find the perimeter of $\Delta H J K$ if $N K=J L+29$.

158 units

CONSTRUCTION

Line Tangent to a Circle Through a Point Exterior to the Circle

Step 1 Construct a circle. Label the center C. Draw a point outside $\odot C$. Then draw $\overline{C A}$.

Step 3 Construct circle X with radius $\overline{X C}$. Label the points where the circles intersect as D and E.

Step 2 Construct the perpendicular bisector of $\overline{C A}$ and label it line ℓ. Label the intersection of ℓ and $\overline{C A}$ as point X.

Step 4 Draw $\overleftrightarrow{A D} . \triangle A D C$ is inscribed in a semicircle. So $\angle A D C$ is a right angle, and $\overleftrightarrow{A D}$ is a tangent.

You will construct a line tangent to a circle through a point on the circle in Exercise 23.
Circumscribed Polygons In Lesson 10-3, you learned that circles can be circumscribed about a polygon. Likewise, polygons can be circumscribed about a circle, or the circle is inscribed in the polygon. Notice that the vertices of the polygon do not lie on the circle, but every side of the polygon is tangent to the circle.

Study Tip

Common

 MisconceptionsJust because the circle is tangent to one or more of the sides of a polygon does not mean that the polygon is circumscribed about the circle, as shown in the second pair of figures.

Polygons are circumscribed.

Polygons are not circumscribed.

EXAMPLE 9 Triangles Circumscribed About a Circle

Triangle $A D C$ is circumscribed about $\odot O$.
Find the perimeter of $\triangle A D C$ if $E C=D E+A F$.
Use Theorem 10.10 to determine the equal measures: $A B=A F=19, F D=D E=6$, and $E C=C B$.
We are given that $E C=D E+A F$, so $E C=6+19$ or 25 .

$$
\begin{aligned}
P & =A B+B C+E C+D E+F D+A F & & \text { Definition of perimeter } \\
& =19+25+25+6+6+19 \text { or } 100 & & \text { Substitution }
\end{aligned}
$$

The perimeter of $\triangle A D C$ is 100 units.
4. Triangle $J K L$ is circumscribed about $\odot R$. Find x and the perimeter of $\triangle J K L$. 4; 52 units

Examples 1 and 2 (pp. 589-590)

For Exercises 1 and 2, use the figure at the right.

1. Tangent $\overline{M P}$ is drawn to $\odot O$. Find x if $M O=20.12$
2. If $R O=13$, determine whether $\overline{P R}$ is tangent to $\odot O$. Yes; $5^{2}+12^{2}=13^{2}$.

Example 3
(p. 591)

Example 4
(p. 592)
3. LANDSCAPE ARCHITECT

A landscape architect is planning to pave two walking paths beside two ponds, as shown. Find the values of x and y. What is the total length of the walking paths? $x=250 ; y=275$; 1550 units
4. Rhombus $A B C D$ is circumscribed about $\odot P$ and has a perimeter of 32 units. Find $x .5$

Extrats

Exercises Examples

$5-10$	1
$11-14$	2
$15-16$	3
$17-22$	4

Exercise Levels
A: 5-22
B: 23-31
C: 32-36

Find x. Assume that segments that appear to be tangent are tangent.

10.

3) Practice

Formative Assessment

Use Exercises 1-4 to check for understanding.

Then use the chart at the bottom of this page to customize assignments for your students.

Odd/Even Assignments

Exercises 5-22 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Determine whether each segment is tangent to the given circle.
11. $\overline{B C}$

yes
12. $\overline{D E}$

13. $\overline{G H}$

no
14. $\overline{K L}$

DIFFERENTATED HOMEWORK OPTIONS				
Level	Assignment	Two-Day Option		
BL Basic	$5-22,32-33,35-46$	$5-21,37-38$	$6-22$ even, 32-33, 35-36, $39-46$	
OL Core	$5-21$ odd, 23-33, 35-46	$5-22,37-38$	$23-33,35-36,39-46$	
AL Advanced /Pre-AP	$23-42$ (optional: 43-46)			

Additional Answers

24. Assume that ℓ is not perpendicular to $\overline{A B}$. If ℓ is not perpendicular to $\overline{A B}$, some other segment $\overline{A C}$ must be perpendicular to ℓ. Also, there is a point D on $\overrightarrow{B D}$ as shown in the diagram such that $\overline{C B} \cong \overline{C D}$. $\angle A C B$ and $\angle A C D$ are right angles by the definition of perpendicular. $\angle A C B \cong \angle A C D$ and $\overline{A C} \cong \overline{A C}$. $\triangle A C B \cong \triangle A C D$ by $S A S$, so $\overline{A B} \cong \overline{A D}$ by CPCTC. Thus, both B and D are on $\odot A$. For two points of ℓ to also be on $\odot A$ contradicts the given fact that ℓ is tangent to $\odot A$ at B. Therefore, $\ell \perp \overline{A B}$ must be true.

25. Proof: Assume ℓ is not tangent to circle A. Since ℓ intersects circle A at B, it must intersect the circle in another place. Call this point C. Then $A B=A C$. But if $\overline{A B} \perp \ell$, then $\overline{A B}$ must be the shortest segment from A to ℓ. If $A B=A C$, then $\overline{A C}$ is the shortest segment from A to ℓ. Since B and C are two different points on ℓ, this is a contradiction. Therefore, ℓ is tangent to circle A.
26. Given: Quadrilateral $A B C D$ is circumscribed about \odot. Prove: $A B+C D=A D+B C$

Proof:

Statements (Reasons)

1. Quadrilateral $A B C D$ is circumscribed about circle P. (Given) 2. Sides $\overline{A B}, \overline{B C}, \overline{C D}$, and $\overline{D A}$ are tangent to $\odot P$ at points H, G, F, and E, respectively. (Def. of circumscribed)
2. $\overline{E A} \cong \overline{A H} ; \overline{H B} \cong \overline{B G}, \overline{C C} \cong \overline{C F}$, $\overline{F D} \cong \overline{D E}$. (Two segments tangent

Find x. Assume that segments that appear to be tangent are tangent.
15.

16.

17.

18.

Find the perimeter of each polygon for the given information.
19.

21. $B Y=C Z=A X=2$ radius of $\odot G=324$ units

22. $C F=6(3-x), D B=12 y-436$ units

23. CONSTRUCTION Construct a line tangent to a circle through a point on the circle following these steps.

- Construct a circle with center T and locate a point P on $\odot T$ and draw $\overrightarrow{T P}$.
- Construct a perpendicular to $\overrightarrow{T P}$ through point T. See students' work.

24. PROOF Write an indirect proof of Theorem 10.9 by assuming that ℓ is not perpendicular to $\overline{A B}$. See margin. Given: $\quad \ell$ is tangent to $\odot A$ at $B, \overline{A B}$ is a radius of $\odot A$.

Prove: Line ℓ is perpendicular to $\overline{A B}$.

* 25. PROOF Write an indirect proof of Theorem 10.10 by assuming that ℓ is not tangent to $\odot A$. See margin.
Given: $\quad \ell \perp \overline{A B}, \overline{A B}$ is a radius of $\odot A$.
Prove: Line ℓ is tangent to $\odot A$.

26. PROOF Write a two-column proof to show that if a quadrilateral is circumscribed about a circle, then the sum of the measures of the two opposite sides is equal to the sum of the measures of the two remaining sides. See margin.
to a circle from the same exterior point are congruent.)
27. $A B=A H+H B, B C=B G+G C, C D=$ $C F+F D, D A=D E+E A$ (Segment Addition)
28. $A B+C D=A H+H B+C F+F D ; D A+$ $B C=D E+E A+B G+G C$ (Substitution) 6. $A B+C D=A H+B G+G C+F D ; D A+$ $B C=F D+A H+B G+G C$ (Substitution)
29. $A B+C D=F D+A H+B G+G C$
(Commutative Prop of Add.)
30. $A B+C D=D A+B C$ (Substitution)

32a. Two; from any point outside the circle, you can draw only two tangents.
32b. None; a line containing a point inside the circle would intersect the circle in two points. A tangent can only intersect a circle in one point.

* 27. PHOTOGRAPHY The film in a $35-\mathrm{mm}$ camera unrolls from a cylinder, travels across an opening for exposure, and then goes into another circular chamber as each photograph is taken. The roll of film has a diameter of 25 millimeters, and the distance from the center of the roll to the intake of the chamber is 100 millimeters. To the nearest millimeter, how much of the film would be exposed if the camera were opened before the roll had been used up? 99 mm

ASTRONOMY For Exercises 28 and 29, use the following information. A solar eclipse occurs when the Moon blocks the Sun's rays from hitting Earth. Some areas of the world will experience a total eclipse, others a partial eclipse, and some no eclipse at all, as shown in the diagram below.

28. The blue section denotes a total eclipse on that part of Earth. Which tangents define the blue area? $\overline{A E}$ and $\overline{B F}$
29. The pink section denotes the area that will have a partial eclipse. Which tangents define the northern and southern boundaries of the partial eclipse? $\overline{A D}$ and $\overline{B C}$
COMMON TANGENTS A line that is tangent to two circles in the same plane is called a common tangent.
Common internal tangents intersect the

segment connecting the centers. | Common external tangents do not intersect |
| :--- |
| the segment connecting the centers. |

Refer to the diagram of the eclipse above.
30. Name two common internal tangents. $\overline{A D}$ and $\overline{B C}$
31. Name two common external tangents. $\overline{A E}$ and $\overline{B F}$ or $\overline{A C}$ and $\overline{B D}$

H.O.T. Problems.

Real-World Link During the 20th century, there were 78 total solar eclipses, but only 15 of these affected parts of the United States. The next total solar eclipse visible in the U.S. will be in 2017.

Source: World Almanac

32. REASONING Determine the number of tangents that can be drawn to a circle for each point. Explain your reasoning. See margin.
a. containing a point outside the circle
b. containing a point inside the circle
c. containing a point on the circle
33. OPEN ENDED Draw an example of a circumscribed polygon and an example of an inscribed polygon, and give real-life examples of each. See Ch. 10 Answer Appendix.

Lesson 10-5 Tangents

BL $=$ Below Grade Level
OL $=$ On Grade Level
AL =Above Grade Level
ELL = English Language Learner

Additional pages not shown:

Cam Lesson Reading Guide, p. 33 (BD ©ilSkills Practice, p. 36 (BD

Ticket Out the Door Provide an example on the board with a triangle formed by a tangent, a radius, and the line from the center of the circle to a point on the tangent. Assign lengths to the figure and ask students to write the equation necessary to solve the problem. Have them state the answer as they leave the classroom.

Foldables $^{\text {TM }}$ Follow-Up
Remind students to use the fifth flap in their Foldables to record notes on what they have learned about tangents.

Additional Answers

32c. Since a tangent intersects a circle in exactly one point, there is one tangent containing a point on the circle.
34. 12: Draw $\overline{P G}, \overline{N L}$, and $\overline{P L}$. Construct $\overline{L Q} \perp \overline{G P}$, thus $L Q G N$ is a rectangle. $G Q=N L=4$, so $Q P=5$. Using the Pythagorean theorem, $(Q P)^{2}+(Q L)^{2}=(P L)^{2}$. So, $Q L=12$. Since $G N=Q L, G N=12$.

35. If the lines are tangent at the endpoints of a diameter, they are parallel and thus, not intersecting.
36. Sample answer: Many of the field events have the athlete moving in a circular motion and releasing an object (discuss, hammer, and shot). The movement of the athlete models a circle and the path of the released object models a tangent. In the hammer throw, the arm of the thrower, the handle, the wire, and hammer form the radius defining the circle when the hammer is spun around. The tangent is the path
34. CHALLENGE Find the measure of tangent $\overline{G N}$. Explain. See margin.
35. REASONING Write an argument to support this statement or provide a counterexample. If two lines are tangent to the same circle, the lines intersect.
 See margin.
36. Writing in Math Using the information about tangents and track and field on page 588, explain how the hammer throw models a tangent. Determine the distance the hammer landed from Moreno if the wire and handle are 1.2 meters long and her arm is 0.8 meter long. See margin.

STANDARDIZE D TEST PRACTICE

37. Quadrilateral $A B C D$ is circumscribed about a circle. If $A B=19, B C=6$, and $C D=14$, what is the measure of $\overline{A D}$? \mathbf{D}

A 11
C 25
B 20
D 27
38. REVIEW A paper company ships reams of paper in a box that weighs 1.3 pounds. Each ream of paper weighs 4.4 pounds, and a box can carry no more than 12 reams of paper. Which inequality best describes the total weight in pounds w to be shipped in terms of the number of reams of paper r in each box? G
F $w \geq 1.3+4.4 r, r \geq 12$
G $w=1.3+4.4 r, r \leq 12$
H $w \leq 1.3+4.4 r, r \leq 12$
J $w=1.3+4.4 r, r \geq 12$
39. ADVERTISING Circles are often used in logos for commercial products. The logo at the right shows two inscribed angles and two central angles. If $\overparen{A C} \cong \overparen{B D}, m \overparen{A F}=90, m \overparen{F E}=45$, and $m \overparen{E D}=90$, find $m \angle A F C$ and $m \angle B E D$. (Lesson 10-4) 45, 45

Find each measure to the nearest tenth. (Lesson 10-3)

40. x

41. $B C$

42. $A P$

PREREQUISITE SKILL Solve each equation. (pages 781 and 782)
43. $x+3=\frac{1}{2}[(4 x+6)-10] 5$
44. $2 x-5=\frac{1}{2}[(3 x+16)-20] 6$
45. $2 x+4=\frac{1}{2}[(x+20)-10] \frac{2}{3}$
46. $x+3=\frac{1}{2}[(4 x+10)-45] 20.5$
$-$
Chapter 10 Circles
of the hammer when it is released. In this case, the distance the hammer was from Moreno was about 75.15 meters.

Pre-AP Activity Use as an Extension.

A circle is circumscribed about a square. The radius of the circle is r. Have the students write an expression for the perimeter of the square in terms of r.
$4 r \sqrt{2} \approx 5.66 r$

