Main Ideas

- Find measures of segments that intersect in the interior of a circle.
- Find measures of segments that intersect in the exterior of a circle.

1. $\angle P T S \cong \angle R T Q$ (Vertical \angle are \cong.); $\angle P \cong \angle R$ (\& intercepting same arc are \cong.); $\angle S \cong$ $\angle Q$ (\& intercepting same arc are \cong.)

The U.S. Marshals Service is the nation's oldest federal law enforcement agency, serving the country since 1789 . Appointed by the President, there are 94 U.S. Marshals, one for each federal court district in the country. The "Eagle Top" badge, introduced in 1941, was the first uniform U.S. Marshals badge.

Segments Intersecting Inside a Circle In Lesson 10-2, you learned how to find lengths of parts of a chord that is intersected by the perpendicular diameter. But how do you find lengths for other intersecting chords?

GEOMETBY LAB

Intersecting Chords

-MAKE A MODEL

- Draw a circle and two intersecting chords.
- Name the chords $\overline{P Q}$ and $\overline{R S}$ intersecting at T.
- Draw $\overline{P S}$ and $\overline{R Q}$.

ANALYZE

1. Name pairs of congruent angles. Explain your reasoning.
2. How are $\triangle P T S$ and $\triangle R T Q$ related? Why? Cut out both triangles, move them, and verify your conjecture. similar by AA Similarity
3. Make a conjecture about the relationship of $\overline{P T}, \overline{T Q}, \overline{R T}$, and $\overline{S T}$. See margin.
4. Measure each angle and verify your conjecture. See students' work.

The results of the lab suggest a proof for Theorem 10.15.

THEOREM 10.15

If two chords intersect in a circle, then the products of the measures of the segments of the chords are equal.
Example: $A E \cdot E C=B E \cdot E D$

You will prove Theorem 10.15 in Exercise 16.

Lesson 10-7 Special Segments in a Circle

4. Foculs

Vertical Alignment

Before Lesson 10-7

Make conjectures about circles.

Lesson 10-7

Use numeric patterns to make generalizations about angle relationships in circles.
Formulate and test conjectures about the properties and attributes of circles and the lines that intersect them based on explorations and concrete models.
After Lesson 10-7
Find areas of circles.

2. Teach

Scaffolding Questions Have

 students observe the picture and read the adjacent caption in Get Ready for the Lesson.
Ask:

- Name the segments that are defined by the intersection of $\overline{A D}$ and $\overline{E B}$ in the figure. $\overline{A F}, \overline{F D}, \overline{E F}$, and $\overline{F B}$
(continued on the next page)

Additional Answer

3. $\frac{P T}{R T}=\frac{S T}{T Q}$ or $P T \cdot T Q=R T \cdot S T$

Lesson 10-7 Resources

Chapter 10 Resource Masters

Lesson Reading Guide, p. 49 (B1) ©1
Study Guide and Intervention, pp. 50-51 BL Skills Practice, p. 52 (B1)
Practice, p. 53 (1) AL
Word Problem Practice, p. 54 (B1) AL Enrichment, p. 55 (11) Al

Transparencies

5-Minute Check Transparency 10-7
Additional Print Resources
Noteables ${ }^{\text {TM }}$ Interactive Study Notebook with Foldables ${ }^{\text {TM }}$
Teaching Geometry with Manipulatives

Technology

geometryonline.com
Interactive Classroom CD-ROM
AssignmentWorks CD-ROM
Graphing Calculator Easy Files

- Name the inscribed angles in the figure. $\angle A, \angle B, \angle C, \angle D$, and $\angle E$
- Is $\triangle D F B$ inscribed in the circle? Why or why not? No; because F is not a point on the circle.

Segments Intersecting Inside a Circle

Examples 1 and 2 show how to use the theorem presented to find the measure of line segments inside a circle.

Formative Assessment

Use the Check Your Progress exercises after each example to determine students' understanding of concepts.

ADDITIONAL EXAMPLES

Find $x .13 .5$

2 BIOLOGY Biologists often examine organisms under microscopes. The circle represents the field of view under the microscope with a diameter of 2 mm . Determine the length of the organism if it is located 0.25 mm from the bottom of the field of view. Round to the nearest hundredth. 0.66 mm

Additional Examples also in:

- Noteables ${ }^{T \mathrm{M}}$ Interactive Study Notebook with Foldables ${ }^{T M}$
- Interactive Classroom PowerPoint ${ }^{\circledR}$ Presentations

Remind students that a diameter can be drawn to bisect any chord of a circle.

EXAMPLE 3 Intersection of Two Chords
(1) Find x.

$$
\begin{aligned}
A E \cdot E B & =C E \cdot E D & & \\
x \cdot 6 & =3 \cdot 4 & & \text { Substitution } \\
6 x & =12 & & \text { Multiply. } \\
x & =2 & & \text { Divide each side by } 6 .
\end{aligned}
$$

1. Find x. 10
real grass and clear panels to allow sunlight in. This setup made it difficult to see the ball in the air, so they painted the ceiling and replaced the grass with carpet, which came to be known as "astro-turf."
Source: ballparks.com

Real-World Link
The Astrodome in Houston was the first ballpark to be built with a roof over the playing field. It originally had eal grass and clear ,

Intersecting chords can also be used to measure arcs.
 unknown measure of the segment of diameter $\overline{A B}$. Use the products of the lengths of the intersecting chords to find the length of the diameter.

$$
\begin{aligned}
A E \cdot E B & =D E \cdot E C & & \text { Segment products } \\
12 x & =24 \cdot 24 & & \text { Substitution } \\
x & =48 & & \text { Divide each side by } 12 . \\
A B & =A E+E B & & \text { Segment Addition Postulate } \\
A B & =12+48 \text { or } 60 & & \text { Substitution and addition }
\end{aligned}
$$

Since the diameter is $60, r=30$.
2. ASTRODOME The highest point, or apex, of the Astrodome is 208 feet high, and the diameter of the circle containing the arc is 710 feet. How long is the stadium from one side to the other? about 323 ft

Personal Tutor at geometryonline.com

608 Chapter 10 Circles

Geometry Lab

Materials: compass, straightedge
Tell students to draw chords that are not congruent and that do not intersect at the center of the circle. Students can cut out the triangles and move them to verify that the triangles are similar, and they can determine the scale factor by which the triangles are related.

Segments Intersecting Outside a Circle Nonparallel chords of a circle that do not intersect inside the circle can be extended to form secants that intersect in the exterior of a circle. The special relationship among secant segments excludes the chord.

Study Tip

Helping You Remember

To remember this concept, the wording of Theorem 10.16 can be simplified by saying that each side of the equation is the product of the exterior part and the whole segment.

Wironarm- 10.16

If two secant segments are drawn to a circle from an exterior point, then the product of the measures of one secant segment and its external secant segment is equal to the product of the measures of the other secant segment and its external secant
 segment.
Example: $A B \cdot A C=A E \cdot A D$
You will prove Theorem 10.16 in Exercise 25.

EXAMPLE 9 Intersection of Two Secants

1. Find $R S$ if $P Q=12, Q R=2$, and $T S=3$.

Let $R S=x$.
$Q R \cdot P R=R S \cdot R T$
$2 \cdot(12+2)=x \cdot(x+3)$
$28=x^{2}+3 x$
$0=x^{2}+3 x-28$ Subtract 28 from each side. $0=(x+7)(x-4)$ Factor.
$x+7=0 \quad x-4=0$

$$
x=-7 \quad x=4 \quad \text { Disregard negative value. }
$$

The same secant segment product can be used with a secant segment and a tangent. In this case, the tangent is both the exterior part and the whole segment. This is stated in Theorem 10.17.

Substitution
Distributive Property

3. Find x. 13 external secant segment.

Example: $W X \cdot W X=W Z \cdot W Y$
You will prove Theorem 10.17 in Exercise 26.

Secant Theorems

In Examples 3 and 4 students use properties and theorems to find lengths of external secant segments.

ADDITIONAL EXAMPLE

Find x if $E F=10, E H=8$, and $F G=24.34 .5$

ADDITIONAL EXAMPLE
Find x. Assume that segments that appear to be tangent are tangent. 8

3 Practice

Formative Assessment

Use Exercises 1-4 to check for understanding.

Then use the chart at the bottom of this page to customize assignments for your students.

Odd/Even Assignments

Exercises 5-15 are structured so that students practice the same concepts whether they are assigned odd or even problems.

EXAMPLE 3 Intersection of a Secant and a Tangent
| Find x. Assume that segments that appear to be tangent are tangent.

$$
\begin{aligned}
(A B)^{2} & =B C \cdot B D \\
4^{2} & =x(x+x+2) \\
16 & =x(2 x+2) \\
16 & =2 x^{2}+2 x \\
0 & =2 x^{2}+2 x-16 \\
0 & =x^{2}+x-8
\end{aligned}
$$

This expression is not factorable. Use the Quadratic Formula.

$$
\begin{array}{rlrl}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & & \text { Quadratic Formula } \\
& =\frac{-1 \pm \sqrt{1^{2}-4(1)(-8)}}{2(1)} & & a=1, b=1, c=-8 \\
& =\frac{-1+\sqrt{33}}{2} \text { or } x=\frac{-1-\sqrt{33}}{2} & & \text { Disregard the negative solution. } \\
& \approx 2.37 & & \text { Use a calculator. } \\
& &
\end{array}
$$

4. Find $x .-1+\sqrt{51} \approx 6.14$

\star indicates multi-step problem

Examples 1, 3, 4 (pp. 608, 609, 610)

Find x to the nearest tenth. Assume that segments that appear to be tangent are tangent.
1.

3.

Example 2 (p. 608)

* 4. HISTORY The Roman Coliseum has many "entrances" in the shape of a door with an arched top. The ratio of the arch width to the arch height is 7:3. Find the ratio of the arch width to the radius of the circle that contains the arch. 7:3.5

610 Chapter 10 Circles

DIFFERENTATED HOMEWORK OPTIONS

Level	Assignment	Two-Day Option		
BL Basic	$5-15,27-29,31-43$	$5-15$ odd, 32, 33	$6-14$ even, 27-29, 31, $34-43$	
OL Core	$5-25$ odd, 27-29, 31-43	$5-15,32,33$	$16-29,31,34-43$	
AL Advanced /Pre-AP	$16-43$			

Exercise Levels
A: 5-15
B: 16-28
C: 29-33

Real-World Career
Construction Worker Construction workers must know how to measure and fit shapes together to make a sound building that will last for years to come. These workers also must master using machines to cut wood and metal to certain specifications that are based on geometry.

For more information, go to geometryonline.com.
16. b. Inscribed \angle that intercept the same arc are \cong.

Find x to the nearest tenth. Assume that segments that appear to be tangent are tangent.
5.

6.

7.

* 8. KNOBS If you remove a knob from a kitchen appliance, you will notice that the hole is not completely round. Suppose the flat edge is 4 millimeters long and the distance from the curved edge to the flat edge is about 4.25 millimeters. Find the radius of the circle containing the hole. about 2.6 mm

9. ARCHITECTURE An arch over a courtroom door is 60 centimeters high and 200 centimeters wide. Find the radius of the circle containing the arc of the arch. 113.3 cm

Find x to the nearest tenth. Assume that segments that appear to be tangent are tangent.
10.

11.

12.
5.6

13.

614.

$\begin{array}{ll}6 & 15 . \\ & 8\end{array}$

16. PROOF Copy and complete the proof of Theorem 10.15.

Given: $\overline{W Y}$ and $\overline{Z X}$ intersect at T.
Prove: $\quad W T \cdot T Y=Z T \cdot T X$

Statements

Reasons

a. Given
b. ?
c. AA Similarity
d. ? Def. of $\sim \Delta s$
e. Cross products

Lesson 10-7 Special Segments in a Circle 611

BL = Below Grade Level
OL = On Grade Level
AL = Above Grade Level
ELL = English Language Learner
Additional pages not shown:
Lesson Reading Guide, p. 49 (BI) ©il
Skills Practice, p. 52

Study Guide and Intervention CaRM pp. 50-51 BD ©il

Exercise Alert!

Find the Error Point out to students that in this lesson they do not use the entire length of the interior secant segment in any of the relationships. Explain that in each case with exterior secant segments, they do use the entire length of the exterior secant segment.

Additional Answers

25. Given: $\overline{E C}$ and $\overline{E B}$ are secant segments.

Prove: $E A \cdot E C=E D \cdot E B$

Proof:

$\overline{E C}$ and $\overline{E B}$ are secant segments.
By the Reflexive Prop., $\angle D E C \cong$ $\angle A E B$. Inscribed angles that intercept the same arc are congruent. So, $\angle E C D \cong \angle E A B$. By AA Similarity, $\triangle A B E \sim \triangle D C E$. By the definition of similar triangles, $\frac{E A}{E D}=\frac{E B}{E C}$. Since the cross products of a proportion are equal, $E A \cdot E C=E D \cdot E B$.
26. Given: tangent $\overline{R S}$ and secant $\overline{S U}$ Prove: $(S R)^{2}=S T \cdot S U$

Proof:

Statements (Reasons)

1. tangent $\overline{S R}$ and secant $\overline{S U}$
(Given)
2. $m \angle R U T=\frac{1}{2} m \overparen{R T}$ (The measure of an inscribed $\angle=$ half the measure of its intercepted arc.)
3. $m \angle S R T=\frac{1}{2} m \overparen{R T}$ (The measure of an \angle formed by a secant and a tangent $=$ half the measure of its intercepted arc.)

Find each variable to the nearest tenth
17.

18.

5.3
19.

27. Sample answer: The product equation for secant segments equates the product of the exterior segment measure and the whole segment measure for each secant. In the case of secant-tangent, the product involving the tangent segment becomes (measure of tangent segment) ${ }^{2}$ because the exterior segment and the whole segment are the same segment.

ExTRA PRACTTCE
See pages 821, 837.
Self-Check Quiz at
geometryonline.com
20.

21.

22.

$x=3, y=8.6$
23.

14.3
24.

を 25. PROOF Write a paragraph proof of Theorem 10.16.
Given: secants $\overline{E C}$ and $\overline{E B}$
Prove: $E A \cdot E C=E D \cdot E B$ See margin.

太26. PROOF Write a two-column proof of Theorem 10.17
Given: tangent $\overline{S R}$, secant $\overline{S U}$
Prove: $\quad(S R)^{2}=S T \cdot S U$ See margin.

H.O.T. Problems.
28. Latisha; the length of the tangent segment squared equals the product of the exterior secant segment and the entire secant, not the interior secant segment.
27. REASONING Explain how the products for secant segments are similar to the products for a tangent and a secant segment.
28. FIND THE ERROR Becky and Latisha are writing products to find x. Who is correct? Explain your reasoning.

$$
\begin{gathered}
\text { Becky } \\
3^{2}=x \cdot 8 \\
9=8 x \\
\frac{9}{8}=x
\end{gathered}
$$

$$
\begin{aligned}
& \text { Latisha } \\
& 3^{2}=x(x+8) \\
& 9=x^{2}+8 x \\
& 0=x^{2}+8 x-9 \\
& 0=(x+9)(x-1) \\
& x=1
\end{aligned}
$$

29. OPEN ENDED Draw a circle with two secant segments and one tangent segment that intersect at the same point. Give a real-life object that could be modeled by this drawing. See margin.
30. $m \angle R U T=m \angle S R T$ (Substitution)
31. $\angle R U T \cong \angle S R T$ (Def. of $\cong \angle \mathrm{s}$)
32. $\angle S \cong \angle S$ (Reflexive Prop.)
33. $\triangle S U R \sim \triangle S R T$ (AA Similarity)
34. $\frac{S R}{S T}=\frac{S U}{S R}$ (Def. of $\sim \Delta \mathrm{S}$)
35. $(R S)^{2}=S T \cdot S U$ (Cross Products)
36. Sample answer:

This could represent rays of light traveling through a magnifying glass and being sent to one point.
30. CHALLENGE In the figure, Y is the midpoint of $\overline{X Z}$. Find WX. Explain how you know this. See margin.

31. Writing in Math Use the figure on page 607 to explain how the lengths of intersecting chords are related. Describe the segments that are formed by the intersecting segments, $\overline{A D}$ and $\overline{E F}$, and the relationship among these segments.

- See margin.

32. Find two possible values for x from the information in the figure. D

A $-4,-5$
C 4,5
B $-4,5$
D $4,-5$
33. REVIEW In the system of equations $4 x+3 y=6$ and $-5 x+2 y=13$, which expression can be substituted for x in the equation $4 x+3 y=6$? H
F $\frac{3}{2}-\frac{3}{4} y$
$\mathbf{H}-\frac{13}{5}+\frac{2}{5} y$
G $6-3 y$
J $13-2 y$

Find the measure of each numbered angle. Assume that segments that appear tangent are tangent. (Lesson 10-6)
34.

12935

157.5
36.

Find x. Assume that segments that appear to be tangent are tangent. (Lesson 10-5)
37.

38.

39.

40. INDIRECT MEASUREMENT Joseph is measuring the width of a stream to build a bridge over it. He picks out a rock across the stream as landmark A and places a stone on his side as point B. Then he measures 5 feet at a right angle from $\overline{A B}$ and marks this C. From C, he sights a line to point A on the other side of the stream and measures the angle to be about 67°. How far is it across the stream rounded to the nearest whole foot? (Lesson 8-5) 12 ft

PREREQUISITE SKILL Find the distance between each pair of points. (Lesson 1-3)
41. $C(-2,7), D(10,12) 13$
42. $E(1,7), F(3,4) \sqrt{13}$
43. $G(9,-4), H(15,-2) \sqrt{40}$
\therefore

Pre-AP Activity Use before the Exercises.

In the figure, decide whether a polygon is inscribed in a circle, circumscribed about a circle, or neither of these. The polygon is inscribed in the circle.

Assess
Yesterday's News Ask students to describe how the lesson on secants, tangents, and angles helped them better understand the lesson on special segments in a circle.

[त्राMury Foldables ${ }^{\text {TM }}$
 nentionem
 Follow-Up

Remind students to use the seventh flap in their Foldables to record notes on what they have learned about special segments in a circle.

Additional Answers

30. $W X=\sqrt{2} \cdot X Y$ because:

$$
\begin{aligned}
Z Y & =X Y \\
(W X)^{2} & =X Y \cdot X Z \\
(W X)^{2} & =X Y(X Y+Z Y) \\
(W X)^{2} & =X Y(2 X Y) \\
(W X)^{2} & =2(X Y)^{2} \\
W X & =\sqrt{2(X Y)^{2}} \\
W X & =\sqrt{2} \cdot X Y
\end{aligned}
$$

31. Sample answer: The product of the parts on one intersecting chord equals the product of the parts of the other chord. Answers should include the following: $\overline{A F}, \overline{F D}, \overline{E F}$, $\overline{F B}$, and $A F \cdot F D=E F \cdot F B$.
