$\qquad$
CONGRUENT TRIANGLES PROOFS
Write a two column proof for the following problems.

1. Given: M is the midpoint of $\overline{A B}$ and $\overline{P Q}$

Prove: $\triangle A P M \cong \triangle Q B M$


## Statements

## Reasons

1. $M$ is the midpoint of $A B$ and $P Q$
2. Given
3. 
4. $\angle \mathrm{PMA} \cong<\mathrm{QMB}$
5. Def of midpoint
6. $\triangle A P M \cong \triangle Q B M$
7. 
8. Given: $\overline{N T}$ is parallel and $\cong$ to $\overline{M O}$ Prove: $<M \cong<T$


## Statements

1. 
2. 
3. $<$ NOM $\cong<T N O$
4. $\triangle M O N \cong \triangle T N O$
5. $<\mathrm{M} \cong<T$
6. 
7. Given: $\overline{V W}$ is parallel and $\cong$ to $\overline{Y Z}$ Prove: $\triangle X V W \cong \triangle X Z Y$


Statements

## Reasons

1. $\overline{V W}$ is parallel and $\cong$ to $\overline{Y Z}$
2. 
3. $\qquad$ 2.
4. $\triangle X V W \cong \triangle X Z Y \quad 3$.
5. Given: $\overline{P O}$ is parallel to $\overline{I T}$

$$
\overline{P I} \cong \overline{T O}
$$

$$
<\mathrm{O} \cong<\mathrm{I}
$$

Prove: $P O \cong I T$


## Statements

1. PO is // to $\mathrm{IT}, \mathrm{PI} \cong \mathrm{TO},<0 \cong<1$
2. 
3. 
4. $\Delta P I T \cong \Delta$
5. $\mathrm{PO} \cong I T$
6. Given: $\overline{P S}$ is the angle bisector of $<Q P R$ $<\mathrm{QSP} \cong<\mathrm{RSP}$ Prove: S is the midpoint of QR

| Statements | Reasons |
| :--- | :--- |
| 1. PS is an $<$ bisector of $<\mathrm{QPR}$, <br> $<\mathrm{QSP} \cong<R S P$ | 1. Given |
| 2. | 2. Def. of Angle bisector |
| 3. | 3. Reflexive |
| $4 . \Delta P Q S \cong \Delta$ | 4. |
| 5. $\mathrm{QS} \cong \mathrm{RS}$ | 5. |
| 6. | 6. Def. of Midpoint |

