GEOMETRY CONGRUENT TRIANGLES PROOFS

Name____

Write a two column proof for the following problems.

1. Given: M is the midpoint of \overline{AB} and \overline{PQ} Prove: $\Delta APM \cong \Delta QBM$

Statements	Reasons
$1.\ensuremath{M}$ is the midpoint of AB and PQ	1. Given
2.	2. Def of midpoint
3. <pma≅<qmb< td=""><td>3.</td></pma≅<qmb<>	3.
4. $\triangle APM \cong \triangle QBM$	4.

2. Given: \overline{NT} is parallel and \cong to \overline{MO} Prove: $< M \cong < T$

Statements	Reasons
1.	1.
2.	2. Reflexive
$3. < \mathbf{NOM} \cong < TNO$	3.
4. $\triangle MON \cong \triangle TNO$	4.
5. <m≅ <t<="" td=""><td>5.</td></m≅>	5.

3. Given: \overline{VW} is parallel and \cong to \overline{YZ} Prove: $\Delta XVW \cong \Delta XZY$

Statements	Reasons
1. \overline{VW} is parallel and \cong to \overline{YZ}	1.
2 And	2.
3. $\Delta XVW \cong \Delta XZY$	3.

4.	Given: \overline{PO} is parallel to \overline{IT}	
	$\overline{PI} \cong \overline{TO}$	
$<\!\!O \cong <\!\!I$		
	Prove: $PO \cong IT$	

Statements	Reasons	
1. PO is // to IT, PI \cong TO, <0 \cong ·	<i 1.="" given<="" td=""></i>	
2.	2. // lines form \cong alt. int. <s< td=""></s<>	
3.	3. Reflexive	
4. $\Delta PIT \cong \Delta$	4.	
5. PO \cong IT	5.	
5. Given: \overline{PS} is the angle bisector of $\langle QPR \rangle$ $\langle QSP \cong \langle RSP \rangle$ Prove: S is the midpoint of QR		
Statements	Reasons	
1. PS is an < bisector of <qpr, <math="" <qsp="">\cong <rsp< td=""><td>1. Given</td></rsp<></qpr,>	1. Given	
2.	2. Def. of Angle bisector	
3.	3. Reflexive	
4. $\Delta PQS \cong \Delta$	4.	
5. QS \cong RS	5.	

6. Def. of Midpoint

6.