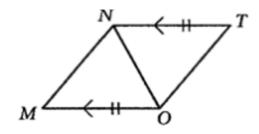
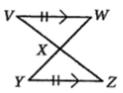

GEOMETRY CONGRUENT TRIANGLES PROOFS

Write a two column proof for the following problems.


1. Given: M is the midpoint of \overline{AB} and \overline{PQ} Prove: $\Delta APM \cong \Delta QBM$

Name: KEY

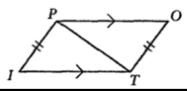
Statements	Reasons
1.M is the midpoint of AB and PQ	1. Given
2.AM≅ MB and PM ≅MQ	2. Def of midpoint
3. <pma≅<qmb< td=""><td>3. Vertical angles are congruent</td></pma≅<qmb<>	3. Vertical angles are congruent
$4. \ \Delta APM \cong \Delta QBM$	4. sas


2. Given: \overline{NT} is parallel and \cong to \overline{MO} Prove: $< M \cong < T$

Statements	Reasons
1. NT is // and \cong to MO	1. Given
2. ON≅ ON	2. Reflexive
$3. < NOM \cong < TNO$	3. // lines form \cong alt. int. <s< th=""></s<>
$4.\ \Delta \mathbf{MON}\cong\Delta\mathbf{TNO}$	4. SAS
5. <m≅ <t<="" th=""><th>5. CPCTC</th></m≅>	5. CPCTC

3. Given: \overline{VW} is parallel and \cong to \overline{YZ}

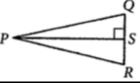
Prove: $\Delta XVW \cong \Delta XZY$



Statements	Reasons
1. \overline{VW} is parallel and \cong to \overline{YZ}	1. Given
2. $\underline{<\mathbf{V}\cong<\mathbf{Z}}$ And $\underline{<\mathbf{W}\cong<\mathbf{Y}}$	2.// lines form \cong alt. int. <s< td=""></s<>
3. $\Delta XVW \cong \Delta XZY$	3. ASA

4. Given: \overline{PO} is parallel to \overline{IT}

 $\overline{PI} \cong \overline{TO}$ $<O \cong <I$


Prove: $PO \cong IT$

Statements	Reasons
1. PO is // to IT, PI \cong TO, $<$ 0 \cong $<$ I	1. Given
2. < OPT ≅< ITP	2. // lines form ≅ alt. int. <s< td=""></s<>
3. $TP \cong TP$	3. Reflexive
$4. \Delta PIT \cong \Delta \underline{TOP}$	4. AAS
5. PO ≅ IT	5. CPCTC

5. Given: \overline{PS} is the angle bisector of $\langle QPR \rangle < QSP \cong \langle RSP \rangle$

Prove: S is the midpoint of QR

Statements	Reasons
 PS is an < bisector of <qpr,< li=""> <qsp <rsp<="" li="" ≅=""> </qsp></qpr,<>	1. Given
$2 < QPS \cong < RPS$	2. Def. of Angle bisector
3. $SP \cong SP$	3. Reflexive
4. $\triangle PQS \cong \triangle PRS$	4. ASA
5. QS ≅ RS	5. CPCTC
6. S is the midpiont of QR	6. Def. of Midpoint