Name: Key

10-8 Equations of Circles: HW

Equation of a Circle A circle is the locus of points in a plane equidistant from a given point. You can use this definition to write an equation of a circle.

Standard Equation of a Circle

An equation for a circle with center at (h, k) and a radius of r units is $(x - h)^2 + (y - k)^2 = r^2$.

Write the equation for each circle, then graph each.

1. Center at
$$(-1,0)$$
, $r=4$

$$(x--1)^{2} + (y-0)^{2} = 4^{2}$$

$$(x+1)^{2} + y^{2} = 16$$

2. Center at
$$(1,-1)$$
, $r = 3$

$$\frac{(x-1)^2 + (y--1)^2 = 3^2}{(x-1)^2 + (y+1)^2 = 9}$$

3. Center at (-6,-4), r=2

Find the center and the radius and graph each equation.

4.
$$(x-1)^2 + (y+2)^2 = 4$$
 5. $(x+2)^2 + (y-1)^2 = 4$

$$6. x^2 + y^2 = 9$$

Center: (1,-2)

Center:
$$(-2 | 1)$$

Center: (0,0)

$$r = \sqrt{4}$$

$$r = 14$$
 $r = 2$

$$r = \sqrt{9}$$
 $r = 3$

7. Write the equation of a circle with the center at (-5,3) and a radius with the endpoint (2,3).

$$(x--5)^{2}+(y-3)^{2}=7^{2}$$

$$(x+5)^{2}+(y-3)^{2}=49$$

8. Write the equation of a circle with the center at (-2,-7) and a radius with the endpoint (0,7).

$$(x--2)^{2} + (y--7)^{2} = 2^{2}$$

$$(x+2)^{2} + (y+7)^{2} = 4$$

9. Write the equation of a circle with the center at (7,-2) and a radius with the endpoint (1,-6).

Find radius:
$$(x-7)^2 + (y--2)^2 = (2\sqrt{13})^2 + (y+2)^2 + (y+2)^2 = (2\sqrt{13})^2 + (y+2)^2 +$$

Find Center: miapoint
$$\left(\frac{4+-2}{2}, \frac{6+6}{2}\right) = \left(\frac{2}{2}, \frac{12}{2}\right)$$

$$((x-1)^2 + (y-6)^2 = 9)$$

C(1,6)

11. Write the equation of a circle whose diameter has endpoints (-7,1) and (-7,9).

Find the Center:
$$(-1+-1, 1+9) = (-1+1, 10)$$

$$(-1+-1, 1+9) = (-1+1, 10)$$
circle.
$$(x+7)^2 + (y-5)^2 = 64$$

13. Communications: When you make a call on a cellular phone, a tower receives the call. The equation $(x-16)^2 + (y-10)^2 = 100$ models the position and range of tower A. A new tower, tower B, is to be built on the location graphed. Write the equation that describes tower B's position and range. A competing provider builds a different tower, tower O, is to be built on the location graphed. Write the equation that describes tower O's position and range.

Tower B:
$$(x-4)^2 + (y-20)^2 = 100$$

- 14. a. Graph the circle with the equation $(x-2)^2 + (y+2)^2 = 9$.
 - b. Graph and write an equation of another circle which is tangent to the one given. Many Answers ... Do Not use r=2
 - c. Graph and write an equation of a third circle which is NOT tangent to the circle given, nor the circle from part a, and has a center at the origin.

b.)
$$(x-2)^2+(y+7)^2=4$$

$$(2.) \times ^2 + y^2 = 25$$

15. The 2 circles $(x+5)^2 + (y+5)^2 = 25$ and $(x-5)^2 + (y-5)^2 = 25$ are graphed in the standard (x,y) coordinate plane below. Which of the following circles, when graphed, will be tangent to both circles.

I.
$$x^2 + y^2 = 4$$

II. $(x+5)^2 + (y-5)^2 = 25$
III. $(x+5)^2 + (y+5)^2 = 25$

