Hour:

November 9, 2020 - December 22, 2020

Accelerated Geometry

 Hybrid/Remote Warm-Up Booklet(C) 2020 Ku ta Software LLC. All rights reserved.
4.6 Warm-Up

Date \qquad
Find the value of x.
1)

A) 57°
B) 70°
C) 76°
D) 65°
3)

A) 50°
B) 67°
C) 79°
D) 75°

A) 72°
B) 66°
C) 67°
D) 70°
4)

A) 74°
B) 53°
C) 39°
D) 60°
6)
A) 67°
B) 60°
C) 52°
D) 37°
A) 65°
B) 79°
C) 76°
D) 62°

8)

A) 60°
B) 52°
C) 42°
D) 56°

9)

A) 80°
B) 87°
C) 95°
D) 93°
11) $m \angle 2=x+47$

A) -9
B) -6
C) 11 D$)-7$
13) $m \angle 2=x+71$

A)-7
B) 8
C) 11 D$)-11$
15) $m \angle 2=10 x+4$

A) -7
B) 6
C) -9
D) 8
10)

A) 156°
B) 154°
C) 122°
D) 116°
12) $m \angle 2=5 x+5$

A) 11
B) -9
C) 9
D) -7
14) $m \angle 2=7 x-10$

A) 9
B) 8
C) 12
D) 10
16) $m \angle 2=-6+25 x$

5.25 .4 (Triangle Inequality) Warm-up

1. If two of the sides of a triangle are 15 and 42 , what is the range of possible values for the third side?
\qquad $<$ X \qquad
2. Determine whether a triangle can be formed by the given set of side lengths is $8 \mathrm{ft}, 12 \mathrm{ft}$, 3 ft . Explain why or why not.
3. List the sides in order from least to greatest.

4. For $\Delta \mathrm{AKJ}$ list the angles from least to greatest.

5. List the sides of $\triangle A B E$ in order from greatest to least.
6. What is the greatest side of $\triangle C D E$?
7. List the sides of $\triangle B C E$ in order from least to greatest.

5.1 Special Segments in Triangles Basic Practice

Vocab Practice:
Circle the letter with the name of the segment/line/ray shown.
1.

(a) perpendicular bisector
(b) angle bisector
(c) median
(d) altitude
2.

(a) perpendicular bisector
(b) angle bisector
(c) median
(d) altitude
(a) perpendicular bisector
(b) angle bisector
(c) median
(d) altitude

Name of the correct point of concurrency for each.
circumcenter incenter centroid orthocenter
5. The three altitudes of a triangle intersect at the \qquad .
6. The three medians of a triangle intersect at the \qquad .
7. The three perpendicular bisectors of a triangle intersect at the \qquad .
8. The three angle bisectors of a triangle intersect at the \qquad .
9. It is equidistant from the three vertices of the triangle. \qquad .
10. It is equidistant from the three sides of the triangle. \qquad .
11. It divides each median into two sections at a $2: 1$ ratio. \qquad .

Name the special segments and the points of concurrency.
Special lines/segments: Perpendicular bisectors, angle bisectors, medians, altitudes Points of concurrency: circumcenter, incenter, centroid, orthocenter
12.

13.

16.

18.

19.

14.

17.

20.

5-1 Skills Practice and Practice

(out of work book)

Bisectors, Medians and Altitudes (OH MY!)

ALGEBRA For Exercises 1-4, use the given information to find each value.

1. Find x if $\overline{E G}$ is a median of $\triangle D E F$.

2. Find x and $R T$ if $\overline{S U}$ is a median of $\triangle R S T$.

3. Find x and $E F$ if $\overline{B D}$ is an angle bisector.

4. Find x and $I J$ if $\overline{H K}$ is an altitude of $\triangle H I J$.

ALGEBRA For Exercises 5-7, use the following information. In $\triangle L M N, P, Q$, and R are the midpoints of $\overline{L M}, \overline{M N}$, and $\overline{L N}$, respectively.
5. Find x.
6. Find y .
7. Find z .

ALGEBRA Lines a, b, and c are perpendicular bisectors of $\triangle P Q R$ and meet at A.
8. Find x.
9. Find y.
10. Find z.

5-1 Practice (out of work book)
Bisectors, Medians and Altitudes (OH MY!)
ALGEBRA In $\triangle A B C, \overline{B F}$ is the angle bisector of $\angle A B C, \overline{A E}, \overline{B F}$, and $\overline{C D}$ are medians, and P is the centroid.

1. Find x if $D P=4 x-3$ and $C P=30$.
2. Find y if $A P=y$ and $E P=18$.

3. Find z if $F P=5 z+10$ and $B P=42$.
4. If $m \angle A B C=x$ and $m \angle B A C=m \angle B C A=2 x-10$, is $\overline{B F}$ an altitude? Explain.

ALGEBRA In $\triangle P R S, \overline{P T}$ is an altitude and $\overline{P X}$ is a median.
5. Find $R S$ if $R X=x+7$ and $S X=3 x-11$.

For \#5-6
6. Find $R T$ if $R T=x-6$ and $m \angle P T R=8 x-6$.

ALGEBRA In $\triangle D E F, \overline{G I}$ is a perpendicular bisector.
7. Find x if $E H=16$ and $F H=6 x-5$.

For \#s 7-9
8. Find y if $E G=3.2 y-1$ and $F G=2 y+5$.
9. Find z if $m \angle E G H=12 z$.

5.1 Special Segments Advanced Warm-Up

Use the diagram for the next 4 problems. D, E, and F are midpoints.

1. If $D E=4 x+5$ and $G J=3 x+25$, find $D E$.
2. If $E F=2 x+7$ and $G H=5 x-1$, find $E F$.
3. If $H J=8 x-2$ and $D F=2 x+11$, find HE.

4. If $H D=3 x+29$ and $D G=14 x+7$, find EF.

USING MEDIANS OF A TRIANGLE In Exercises 8-12, use the figure below and the given information.
P is the centroid of $\triangle D E F, \overline{E H} \perp \overline{D F}$,
$D H=9, D G=7.5, E P=8$, and $D E=F E$.
5. Find the length of $\overline{\boldsymbol{F H}}$.
6. Find the length of $\overline{E H}$.

7. Find the length of $\overline{P H}$.
8. Find the perimeter of $\triangle D E F$.

Use the triangle WHA for \#9-10.
9. If $\overline{W P}$ is a median and an angle bisector, $A P=3 y+11$, $P H=7 y-5, m \angle H W P=x+12, m \angle P A W=3 x-2$, and $m \angle H W A=4 x-16$, find x and y. Is $\overline{W P}$ also an altitude? Explain.

10. If $\overline{W P}$ is a perpendicular bisector, $m \angle W H A=8 q+17$, $m \angle H W P=10+q, A P=6 r+4$, and $P H=22+3 r$, find r, q, and $m \angle H W P$.

Use The following with the figure to the right.
In $\triangle P Q R, Z Q=3 a-11, Z P=a+5, P Y=2 c-1$, $Y R=4 c-11, m \angle P R Z=4 b-17, m \angle Z R Q=3 b-4$, $m \angle Q Y R=7 b+6$, and $m \angle P X R=2 a+10$.
11. $\overline{P X}$ is an altitude of $\triangle P Q R$. Find a.
12.

If $\overline{R Z}$ is an angle bisector, find $m \angle P R Z$.
13. Find $P R$ if $\overline{Q Y}$ is a median.

14. If $\overleftrightarrow{Q Y}$ is a perpendicular bisector of $\overline{P R}$, find b.

Pg. 206 \#13-18, 23-27, 29-34
13. Identify the obtuse triangles if $\angle M J K \cong \angle K L M, m \angle M J K=126$, and $m \angle J N M=52$.

15. ALGEBRA Find $x, J M, M N$, and $J N$ if $\triangle J M N$ is an isosceles triangle with $\overline{J M} \cong \overline{M N}$.

14. Identify the right triangles if $\overline{I J} \| \overline{G H}, \overline{G H} \perp \overline{D F}$, and $\overline{G I} \perp \overline{E F}$.

16 ALGEBRA Find $x, Q R, R S$, and $Q S$ if $\triangle Q R S$ is an equilateral triangle.

COORDINATE GEOMETRY Find the measures of the sides of $\triangle A B C$ and classify each triangle by its sides.
17. $A(5,4), B(3,-1), C(7,-1)$
18. $A(-4,1), B(5,6), C(-3,-7)$

Identify the indicated triangles in the figure if $\overline{A B} \cong \overline{B D} \cong \overline{D C} \cong \overline{C A}$ and $\overline{B C} \perp \overline{A D}$.
23. right
25. scalene
24. obtuse
26. isosceles

27. ASTRONOMY On May 5, 2002, Venus, Saturn, and Mars were aligned in a triangular formation. Use a protractor or ruler to classify the triangle formed by sides and angles.

ALGEBRA Find x and the measure of each side of the triangle.
29. $\triangle G H J$ is isosceles, with $\overline{H G} \cong \overline{J G}, G H=x+7, G J=3 x-5$, and $H J=x-1$.
30. $\triangle M P N$ is equilateral with $M N=3 x-6, M P=x+4$, and $N P=2 x-1$.
31. $\triangle Q R S$ is equilateral. $Q R$ is two less than two times a number, $R S$ is six more than the number, and $Q S$ is ten less than three times the number.
$\triangle J K L$ is isosceles with $\overline{K J} \cong \overline{L J} . J L$ is five less than two times a number. $J K$ is three more than the number. $K L$ is one less than the number. Find the measure of each side.
33. ROAD TRIP The total distance from Charlotte to Raleigh to Winston-Salem and back to Charlotte is about 292 miles. The distance from Charlotte to Winston-Salem is 22 miles less than the distance from Raleigh to Winston-Salem. The distance from Charlotte to Raleigh is 60 miles greater than the distance from Winston-Salem to Charlotte. Classify the triangle that connects Charlotte, Raleigh, and Winston-Salem.

34. CRYSTAL The top of the crystal bowl pictured at the right is circular. The diameter at the top of the bowl is $\overline{M N} . P$ is the midpoint of $\overline{M N}$, and $\overline{O P} \perp \overline{M N}$. If $M N=24$ and $O P=12$, determine whether $\triangle M P O$ and $\triangle N P O$ are equilateral.

Pg 229\#7-1 Determine whether the given measures can be the lengths of the sides of a triangle. Write yes or no. Explain.
7. $1,2,3$
8. $2,6,11$
9. $8,8,15$
10. $13,16,29$
11. $18,32,21$
12. $9,21,20$

Find the range for the measure of the third side of a triangle given the measures of two sides.
13. 5 and 11
14. 7 and 9
15. 10 and 15
16. 12 and 18
17. 21 and 47
18. 32 and 61

Pg 284 \#10
10. BASEBALL During a baseball game, the batter hits the ball to the third baseman and begins to run toward first base. At the same time, the runner on first base runs toward second base. If the third baseman wants to throw the ball to the nearest base, to which base should he throw? Explain.

REASONING Is the following statement always, sometimes, or never true? Justify your answer.
In $\triangle J K L$ with right angle J, if $m \angle J$ is twice $m \angle K$, then the side opposite $\angle J$ is twice the length of the side opposite $\angle \mathrm{K}$.

FIND THE ERROR Hector and Grace each labeled $\triangle Q R S$. Who is correct? Explain.

BASEBALL Alan, Brendon, and Carl were standing in the triangular shape shown below, throwing a baseball to warm up for a game. Between which two players was the throw the longest? (Lesson 5-2)

6. MULTIPLE CHOICE

Which list gives the sides of $\triangle S T U$ in order from longest to shortest? (Lesson 5-2)

A $\overline{T U}, \overline{S T}, \overline{S U}$
C $\overline{S U}, \overline{S T}, \overline{T U}$
B $\overline{S U}, \overline{T U}, \overline{S T}$
D $\overline{S T}, \overline{T U}, \overline{S U}$

Pg 294
In \triangle QRS, $m \angle Q=x+15, m \angle R=2 x+10$, and
$m \angle S=4 x+15$. (Lesson $5-2$)
7. Determine the measure of each angle.
8. List the sides in order from shortest to longest.
9. TRAVEL A plane travels from Des Moines to Phoenix, on to Atlanta, and then completes the trip directly back to Des Moines, as shown in the diagram. Write the lengths of the legs of the trip in order from greatest to least. (Lesson 5-2)

Phoenix
Atlanta

Congruent Triangle Practice

1)

2)

3)

7)

9)

4)

6)

10)

12)

Congruent Triangle Warm-Up

Congruent Triangles In-Class Practice

1) Identify the congruent triangles in the given figure

2) Verify that the following transformation preserves congruence.

$\triangle L M N \cong \triangle L^{\prime} M^{\prime} N^{\prime}$

Congruent Triangle Shortcuts Warm-up

Use the given information to identify the congruent triangles. Describe what congruence shortcut you used and what angles or sides you know are congruent.
3.

a. Short cut congruence used \qquad
b. Name the 3 congruent corresponding parts:
4.

a. Short cut congruence used \qquad
b. Name the $\mathbf{3}$ congruent corresponding parts:
5.

a. Short cut congruence used \qquad
b. Name the $\mathbf{3}$ congruent corresponding parts:
6.

a. Short cut congruence used \qquad
b. Name the $\mathbf{3}$ congruent corresponding parts

Mixed Review of Congruent Triangles and Coordinate Geometry (4.3, 4.4, 4.5, 4.7)

Directions: Answer the questions below. Use the figure to help answer the questions.

1. Which shortcut proves the triangles congruent?

2. Which shortcut proves the triangles congruent?
\qquad (Mark \& list the corresponding parts used)

3. If $\triangle T G S \cong \triangle K E L$, which angle in $\triangle K E L$ corresponds to $\angle T$? \qquad
4. Identify the congruent triangles and name their corresponding congruent angles.

Congruent Triangles: \qquad

Congruent Angles: \qquad
5. $\triangle K L M$ is an isosceles triangle and $\angle 1 \cong \angle 2$. Name the shortcut that could be used to prove
$\triangle L K P \cong \triangle$ $L M N$. Choose from SSS, SAS, ASA, and AAS. (Be sure to mark \& list the corresponding parts used for the shortcut)

6. Without finding any other angles or sides congruent, circle the pair of triangles can be proved to be congruent by the HL Theorem.

7. If $\triangle L M N$ is isosceles and T is the midpoint of $L N$, which shortcut can be used to prove $\triangle M L T \cong \triangle M N T$? (Be sure to mark \& list the corresponding parts used for the shortcut)

8. Which triangles are congruent in the figure below?
(Write out the congruence statement)

9. If $\triangle A B C$ is isosceles and $A E \cong F C$, which shortcut can be used to prove $\triangle A E B \cong \triangle C F B$? (Be sure to mark \& list the corresponding parts used for the shortcut)

10. Which triangles are congruent in the figure?
(Write out the congruent statement) \qquad

11. If $\triangle D J L \cong \triangle E G S$, which segment in $\triangle E G S$ corresponds to $D L$?
12. If $\Delta W X Y \cong \Delta Z Y X$, find x .

13. If $\triangle A C R \cong \triangle A B R$, find x .

$X=$ \qquad $X=$ \qquad
14. If $\Delta W R S \cong \triangle Z T S$, find the value(s) of x .

15. If $\triangle A D B \cong \triangle C D B$, find the value(s) of x .

$$
X=
$$

\qquad
$X=$ \qquad

State what additional information is required in order to know that the triangles are congruent for the reason given.
16) AAS

17) AAS

18) HL

19) ASA
\qquad
\cong \qquad
\qquad
\qquad
\qquad
\cong

Complete each congruence statement by naming the corresponding angle or side.
20) $\triangle G H I \cong \triangle M L K$

$$
\overline{G H} \cong
$$

\qquad
21) $H I J \cong \triangle I H C$

$\angle J H I \cong$: \qquad
23) $\triangle R S T \cong \triangle S R G$
$\angle T R S \cong$ \qquad

Mixed Practice Continued: Practice Triangle Coordinate Geometry

Find the missing coordinates of each triangle

Find the missing coordinates of each triangle.
1.

2.

3.

4.

5.

6.

7.

8.

Use the triangle to the right to answer the following questions.

9. a). Find the slope of SR and ST.
b). What does this tell you about triangle RST?

c). Find the length of SR and ST.
d). What does this about triangle RST?
10. Given: isosceles $\triangle A B C$ with $\overline{A C} \cong \overline{B C}$ R and S are midpoints of legs $\overline{A C}$ and $\overline{B C}$.

Find points S and R.

Given: $\triangle A B C$
S is the midpoint of $\overline{A C}$.
T is the midpoint of $B C$.
11.

Find S and T.
12. Katrina lives 6 miles east and 4 miles north of her high school. The mall is 2 miles west and 3 miles north of the school. Write a coordinate proof to prove that Katrina's high school, home and the mall form a right triangle.

6.1 Practice

1. What is the sum of the interior angle measures of a 32-gon? What is the sum of the exterior angle measures?

If the polygon shown is regular, what is $m \angle A B C$?
F 140°
G 144°

2.

H 162°
J 180°
For 3-4, Find x and the measure of each angle.
3.

4.

5 . Find x.

decagon in which the measures of the interior angles are $x+5, x+10, x+20, x+30, x+35$, $x+40, x+60, x+70, x+80$, and $x+90$
6. Find the measures of <e and <f. Show all your work.

7. What is the sum of the measures of the exterior angles of a nonagon?
8. What is the measure of an exterior angle of an equiangular hexagon?
9. How many sides does a regular polygon have if each exterior angle measures 36° ?
10. How many sides does a polygon have if the sum of its interior angle measure is 4140° ?
11. If a regular polygon has 24 sides, what is the measure of each interior and exterior angle?
12. What is the measure of an individual angle of a regular 25-gon?
13. What is the measure of an individual interior angle of a regular dodecagon?
14. The measure of an interior angle of a regular polygon is 140°. Find the number of sides the regular polygon has.
15. What is the sum of the measures of the exterior angles of a dodecagon?
16. What is the measure of an exterior angle of an equiangular pentagon?
17. How many sides does a regular polygon have if each exterior angle measures 22.5° ?
18. The measure of an interior angle of a regular polygon is 140°. Find the number of sides the regular polygon has.
19. The measure of an interior angle of a regular polygon is 108°. Find the number of sides the regular polygon has.
20. How many sides does a regular polygon have if each exterior angle measures 14.4° ?

Parallelograms Extra Practice

1. List all properties of parallelograms:
2. $A B C D$ is a parallelogram. Find x, y and the perimeter. Show your geometry and justifications for all steps.

3. $A B C D$ is a parallelogram. Find $x, y, B D$ and $A C$. Show your geometry and justifications for all steps.

4. $A B C D$ is a parallelogram. Find x, y and $<C$. Show your geometry and justifications for all steps.

5. Complete the statement and justify your reasoning.
a. JK $=$ \qquad because \qquad K
b. $\mathrm{MN}=$ \qquad because \qquad
c. $<\mathrm{MLK}=$ \qquad because \qquad
d. $<$ JKL= \qquad because \qquad
e. $J N=$ \qquad because \qquad
f. $K L=$ \qquad because \qquad
g. $<\mathrm{MNL}=$ \qquad because \qquad
h. $<\mathrm{MKL}=$ \qquad because \qquad
6. LMNQ is a parallelogram. Find the measures and explain your reasoning.
a. $\mathrm{LM}=$ \qquad b. $\mathrm{LP}=$ \qquad because:
because:

c. $\mathrm{LQ}=$ \qquad
d. $Q P=$ \qquad because:
because:
e. $<\mathrm{LMN}=$ \qquad because:
h. $\angle \mathrm{LMQ}=$ \qquad
f. $<\mathrm{NQL}=$ \qquad g. $<\mathrm{MNQ}=$ \qquad because:
because:
because:

6.2 PARALLELOGRAM WARM-UP

Ex1: ABCD is a parallelogram. Given $m \angle \mathrm{ABD}=65^{\circ}, m \angle C B D=45^{\circ}, \mathrm{AE}=5, \mathrm{BC}=8$. Find the measure of the following:
$A D=$ \qquad
$\mathrm{EC}=$ \qquad
$m \angle A D C=$ \qquad

$m \angle B C D=$ \qquad
$\mathrm{m} \angle \mathrm{BDA}=$ \qquad

Ex2: Find the indicated measure in $\square \boldsymbol{A B C D}$.
12. $m \angle A E B$
14. $m \angle A E D$
16. $m \angle B A D$
18. $m \angle A D C$
13. $m \angle B A E$
15. $m \angle E C B$
17. $m \angle D C E$
19. $m \angle D C B$

6.3 Warm-Up Tests for Parallelograms

1: Points P, Q, R, and S are the vertices of a quadrilateral. Determine if the quadrilateral is a parallelogram. Show all work.

b) $P(2,1), Q(6,1), R(5,8), S(3,8)$

6.4 Rectangles Practice

ALGEBRA RSTU is a rectangle.

1. If $U Z=x+21$ and $Z S=3 x-15$, find $U S$.

2. If $R Z=3 x+8$ and $Z S=6 x-28$, find $U Z$.

3. If $R T=5 x+8$ and $R Z=4 x+1$, find $Z T$.

4. If $m \angle S U T=3 x+6$ and $m \angle R U S=5 x-4$, find $m \angle S U T$.

5. If $m \angle S R T=x^{2}+9$ and $m \angle U T R=2 x+44$, find x.

6. If $m \angle R S U=x^{2}-1$ and $m \angle T U S=3 x+9$, find $m \angle R S U$.

$G H J K$ is a rectangle. Find each measure if $m \angle 1=37$.
7. $m \angle 2$
9. $m \angle 4$
11. $m \angle 6$
8. $m \angle 3$
10. $m \angle 5$
12. $m \angle 7$

6.4RECTANGLE WARM-UP

Properties of Rectangles - a parallelogram with four right angles.

- Opposite sides of a parallelogram are congruent
- Opposite angles of a parallelogram are congruent
- Consecutive angles of a parallelogram are supplementary
- The sum of the angles of a parallelogram are $180(4-2)=180 \cdot 2=360^{\circ}$
- The diagonals of a parallelogram bisect each other
- The diagonals are congruent

1. If $\mathrm{m}<\mathrm{HFG}=74^{\circ}$, fill in all of the other angle measures, if FGHI is a rectangle.

2. If $\mathrm{m}<\mathrm{RTV}=150^{\circ}$, fill in all of the other angle measure if RSTU is a rectangle .

3. Use rectangle RSTU and state the property you used.
a.) If $T R=3 x+8$ and $U S=6 x-28$. Find x, $U S$ and $S Q$.

$$
x=
$$

\qquad
\qquad
SQ = \qquad
b.) If $m<S U R=3 x+6$ and $m<S U T=5 x-4$. Find x and $m<S U T$.

4. Use rectangle $A B C D$ and state the property you used.
a.) If $E B=5 x-8$ and $D E=4 x-1$. Find $x, D E$ and $B D$.

$\mathrm{x}=$ \qquad
5. Determine whether the figure with vertices $F(-4,-3), G(3,-1), H(2,3)$ and $J(-5,1)$ is a rectangle.

6.5 Rhombi/Squares Practice

Use rhombus $D K L M$ with $A M=4 x, A K=5 x-3$, and $D L=10$.

1. Find x.

2. Find $A L$.

3. Find $m \angle K A L$.
4. Find $D M$.

$$
\text { <STN = } 30 \text { and }<\text { RVT =120 }
$$

Use rhombus RSTV with $R S=5 y+2, S T=3 y+6$, and $N V=6$.
5. Find y.
6. Find TV.

7. Find $m \angle N T V$.
8. Find $m \angle S V T$.
9. Find $m \angle R S T$.
10. Find $m \angle S R V$.

Rhombi/Squares Continued
Use rhombus $P R Y Z$ with $R K=4 y+1, Z K=7 y-14$, $P K=3 x-1$, and $Y K=2 x+6$.

1. Find $P Y$.
2. Find $R Z$.

3. Find $R Y$.
4. Find $m \angle Y K Z$.
$N Q=6$
Use rhombus $M N P Q$ with $P Q=3 \sqrt{2}, P A=4 x-1$, and $A M=9 x-6$.
5. Find $A Q$.
6. Find $m \angle A P Q$.

7. Find $m \angle M N P$.
8. Find $P M$.

6.5 Rhombi and Square Warm-Up

Rhombi
You must state the property you used for EACH answer!

1. If $\mathrm{m} \angle \mathrm{RST}=67^{\circ}$, find $\mathrm{m} \angle \mathrm{RSW}$.

2. If $m \angle S W T=(2 x+8)^{\circ}$, find ' x '.

RSTV is a rhombus.
2. Find $\mathbf{m} \angle \mathrm{SVT}$ if $\mathbf{m} \angle \mathrm{STV}=135^{\circ}$.

RSTV is a rhombus.
4. If you are given the following information of RSTV, can it be classified as a rhombus? Why or why not?
$\mathrm{ST}=5 \sqrt{2}$ units $\quad \mathrm{VT}=5 \sqrt{2}$ units
$\mathrm{SR}=5 \sqrt{2}$ units $\quad \mathrm{RV}=5 \sqrt{2}$ units

You must state the geometry and justification!!!

Use rhombus PQRS and the given information to find each value.
5. If $S Q=24, R P=10$, find $S R$.
6. If $m \angle P R S=17$, find $m \angle Q R S$.

7. Find $m \angle S T R$.
8. If $S P=4 x-3$ and $P Q=18+x$, find the value of x.
9. Determine whether the figure with vertices $E(-2,-1), F(-4,3), G(1,5) H(3,1)$ is a rhombus.

Squares:

10 MATH is a square.
a) If $\mathrm{MA}=8$, then $\mathrm{AT}=$ \qquad
b) $\mathrm{m} \angle \mathrm{HST}=$ \qquad
c) $\mathrm{m} \angle \mathrm{MAT}=$ \qquad

d) If $\mathrm{HS}=2$, then $\mathrm{HA}=$ \qquad and $M T=$ \qquad
e) $\mathrm{m} \angle \mathrm{HMT}=$ \qquad
11. Use square $A B D C$.
a. If $A B=2 x+5$ and $B D=5 x-20$, find x.
b. Find the measures of the numbered angles.

You must show all of your work:

12. Determine whether the figure with vertices $A(0,3), B(-3,0), C(0,-3)$, and $D(3,0)$ is a square.
13. Determine whether the figure with vertices $A(-4,0), B(-3,3), C(2,2)$, and $D(1,-1)$ is a square.

ACC REVIEW Special Parallelogram Practice

Name the complete each statement about parallelogram JKLM. Show your justification for each.

1. $<\mathrm{LMJ} \cong$ \qquad because \qquad
2. LK / / \qquad because \qquad
3. $\mathrm{KN} \cong$ \qquad because \qquad

4. R STU is a parallelogram. $R O=y+3, S O=2 x ; T O=3 y-7 ; U O=x+5$. Find x and y. You MUST show your geometry and justify.

Find x :
Geometry:
Justify:

Find y :
Geometry:
Justify:
5. MNOP is a square. Find x. You MUST show your geometry and justify.

Find x :
Geometry:
Justify:
6. DEFG is a rhombus. Find x. You MUST show your geometry and justify.

Find x :
Geometry:
Justify:
7. PQRS is a rhombus. Find x. You MUST show your geometry and justify.

Find x :

Geometry:
Justify:
8. ABCD is a parallelogram. Solve for \boldsymbol{h} and \mathbf{g} and show your geometry and justifications for your set up.

Find g:
Geometry:
Justify:

Find h:
Geometry: Justify:
9. If $\mathrm{m} \angle 1=12 \mathrm{x}+4$ and $\mathrm{m} \angle 2=16 \mathrm{x}-12$ in rectangle $A B C D$, find x . You MUST show your geometry and justify.

10. WXYZ is a parallelogram. Find n, y, and $m \angle Z$. You MUST show your geometry and justify. Find n:
Geometry:
Justify:

Find y :
Find $\mathrm{m} \angle \mathrm{Z}$. (No geo or just)
Geometry:
Justify:
11. MNOP is a square. Find all numbered angles and justify your reasoning.

$\mathrm{m} \angle 1=$ \qquad because \qquad
$\mathrm{m} \angle 2=$ \qquad because \qquad
$\mathrm{m} \angle 3=$ \qquad because \qquad
$\mathrm{m} \angle 4=$ \qquad because \qquad
$\mathrm{m} \angle 5=$ \qquad because \qquad
$\mathrm{m} \angle 6=$ \qquad because \qquad
12. Use Rhombus WXYZ.
a. Find $\mathrm{m}<\mathrm{WYX}$. \qquad because \qquad
b. Find $\mathrm{m}<\mathrm{YZX}$. \qquad because \qquad
c. Find $\mathrm{m}<\mathrm{WZX}$. \qquad because \qquad

d. Find $\mathrm{m}<\mathrm{YZW}$. \qquad because \qquad
e. If $W Z=19 \mathrm{~m}$, find YZ . \qquad because \qquad
f. If $W Z=19 \mathrm{~m}$ and $V W=4 \mathrm{~m}$, find $V Z$.

$$
\mathrm{VZ}=
$$

\qquad
13. If $\mathrm{m} \angle \mathrm{SUT}=3 \mathrm{x}+6$ and $\mathrm{m} \angle \mathrm{RUS}=5 \mathrm{x}-4$, find $\mathrm{m} \angle \mathrm{SUT}$ if URST is a rectangle . You MUST show your geometry and justify.
Geometry:

Justify:

14. ABCD is a rhombus. Find x. You MUST show your geometry and justify.

Geometry:

Find x :
Justify:
15. ABCD is a rectangle. If $\mathrm{m} \angle \mathrm{AED}=12 \mathrm{x}$ and $\mathrm{m} \angle \mathrm{BEC}=10 \mathrm{x}+20$, find $\mathrm{m} \angle \mathrm{EDA}$. You MUST show your geometry and justify.

Find x :

Geometry:
Justify:

$$
\mathrm{X}=
$$

$\mathrm{m} \angle \mathrm{EDA}=$ \qquad
16. GHJK is a rectangle. If $\mathrm{m} \angle 1=23^{\circ}$, find all remaining numbered angles. You do not need to show geometry or justify your work.

$$
\begin{aligned}
& \mathrm{m} \angle 2=\ldots \\
& \mathrm{m} \angle 3= \\
& \mathrm{m} \angle 4=\square \\
& \mathrm{m} \angle 6= \\
& \mathrm{m} \angle 7=
\end{aligned}
$$

Trapezoid and Kites Practice

Find the missing angle measures for each trapezoid.
I. Find $m<\mathrm{J}$ and $m<\mathrm{L}$

2. Find $m<\mathbf{R}, m<\mathbf{P}$ and $m<\mathbf{Q}$.

4. Isosceles Trapezoid ABCD.

$\mathrm{m} \angle 1={ }^{-}{ }^{\circ}$
$\mathrm{m} \angle 2=$ \qquad
$\mathrm{m} \angle 3=$ \qquad
$\mathrm{m} \angle 4=$ \qquad

$$
\mathrm{m} \angle 1=
$$

$$
m \angle 2=
$$

\qquad
5. Find the values of the variables.

$$
D F=4 x, E G=2 x+16
$$

6. In the accompanying figure, isosceles trapezoid $A B C D$ has bases of lengths 9 and 15 and an altitude of length 4 . Find $A B$.

7. . VS is the midsegment of trapezoid QRTU If $R Q=3 x-3, U T=4 x+2$ and $V S=10$, find x.

$J K L M$ is a kite. Find $m \angle K$.
8.

9.

Use Theorem 8.18 and the Pythagorean Theorem to find the side lengths of the kite. Write the lengths in simplest radical form.
10.

11.

Basic Review

1. $M(-4,5), N(2,2), P(0,-2), Q(-6,1)$

What is the most specific name of this figure?
2.

Quadrilateral $M N P Q$ has vertices $M(4,0), N(0,6), P(-4,0)$ and $Q(0,-6)$. Determine whether $M N P(Q$ is a trapezoid, a parallelogram, a square, a rhombus, or a quadrilateral. Choose the most specific term. Explain.

6.6 Review Warm Up

1. Find $<\mathrm{N}$ and $<\mathrm{Q}$.
2. If $A B C D$ is and isosceles trapezoid with $A C=5 y, B E=4 y-1$ and $D E=2 y-1$. Find y.

B
A

3. Use isosceles trapezoid $A B C D$ from \#2. If $m \angle A C D=39^{\circ}$, and $\angle B C A=48^{\circ}$, find $m \angle A B D$.

6.7 Review

1. $\triangle B C D$ is a rhombus with $A(a, 0), B(0, b)$, and $D(0,-b)$. Find the possible coordinates of C.
2. $A B C D$ is a square with $A(a, 0), B(0, a)$, and $C(-a, 0)$. Find the possible coordinates of D.
3. Given rectangle $A B C D$, name the coordinates of Λ.

4. Name the coordinates of the endpoints of the median of trapezoid $A B C D$.

5. Name the missing coordinatca of C in parallelogram $A B C D$.

6.
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Ex6 Name the missing coordinates for the isosceles trapezoid.

Ex7 In the figure, $A B C D$ is a parallelogram. What are the coordinates of point D ?

Ex8 Show that opposite sides of a parallelogram are congruent.

Ex9 Find the length $M N$

7.2 Ratios, Proportions, and Similar Figures Warm-up

1. Given the two polygons are similar, find x and y.

2. The two quadrilaterals are similar.
A. Write the similarity statement.
B. Find the scale factor.
C. Find x .
D. Find the measure of the indicated side.

A. Quad ABCD~ \qquad B. \qquad C. \qquad D. $G F=$ \qquad
3. Determine whether quadrilateral $A B C D \sim$ quadrilateral $E F G H$. Justify your answer.

Similarity, Dilation and Perimeter Ratio Warm Up

1. Use the dilation below to answer the following questions. The dotted figure is the dilation image.
a) Find the scale factor for the dilation below with the center at the origin.

$$
\mathrm{SF}=
$$

\qquad
b) Determine whether the dilation is an enlargement, reduction, or congruent transformation.

Classification: \qquad
2. Find a, b, and c if the two triangles below are similar and the smaller triangle has a perimeter of 56 inches. Round answers to the nearest tenth if necessary. The perimeter ratios is equal to the side length ratio.

$\mathrm{a}=$ \qquad
$b=$ \qquad
$\mathrm{c}=$ \qquad
3. The ratio of the sides of a triangle are 2:3:5. Find the length of each side if the perimeter is 85 cm .

Shortest Side: \qquad

Middle Side: \qquad

Longest Side: \qquad
4. Given that $\triangle R S T \sim \Delta X Y Z$, find the scale factor.

						\uparrow													\uparrow						
												\rightarrow													
												\longrightarrow													
						\downarrow													\downarrow						

						\uparrow													\uparrow						
												\longrightarrow													\longrightarrow
														-											
														-											
-						\downarrow													\downarrow						

						\uparrow													\uparrow						
								-																	
												\longrightarrow													\longrightarrow
	-					\downarrow													\downarrow						

						Pl							
						\downarrow							

						\uparrow													\uparrow						
												\rightarrow													
												\longrightarrow													\longrightarrow
						\downarrow													\downarrow						

						Pl							
						\downarrow							

