ACC Geometry Booklet for Notes #1

Introduction to Trig Graphs (Chapter 14) (Basics)

Name:

ACC Geometry Introduction to Trig Graphs (Chapter 14)

Name: _____

Objective: To construct the parent graphs of trigonometric functions for sine, cosine, and tangent using exact values.

Recall: A function whose graph repeats a basic pattern is said to be *periodic*.

θ									
(degree)	0 °	30 °	45º	60º	90 °	120°	135°	150°	180 °
x									
θ									
(radian)									
x									
sin $ heta$									
(exact)									
У									
sin $ heta$									
(nearest									
tenth), y									

Complete the following table for $sin \theta$.

θ									
(degree)	210°	225º	240°	270°	300°	315°	330°	360°	390 °
X									
θ									
(radian)									
x									
sin $ heta$									
(exact)									
У									
sin $ heta$									
(nearest									
tenth), y									

(13.6) Period- Length that is takes before the graph repeats.

To graph the function $y = sin \theta$, use values of θ expressed in either degrees or radians. These values represent the x values on a graph. Use the values of $sin \theta$ expressed as a value rounded to the nearest tenth to represent the y values on the graph.

Ordered pairs for points on these graphs are of the form $(\theta, \sin \theta)$.

On the next page, plot the points, $(\theta, \sin \theta)$. Connect the points with a smooth curve. This graph represents the graph of the sine function.

sin 0	
Basic Characteristics:	Music Have 5 Key Points
Starts	
Amplitude=	3.
Period (interval)=goes through one period before it starts to repeat.	4. 5.
l	

Complete the following table for $\cos \theta$.

θ (degree)	0 º	30º	45 º	60º	90°	120º	135°	150º	180º
X									
θ									
(radian)									
х									
cos θ									
(exact)									
У									
cos θ									
(nearest									
tenth), y									

θ									
(degree)	210°	225º	240°	270°	300°	315 °	330 °	360 °	390 °
X									
θ									
(radian)									
х									
$\cos \theta$									
(exact)									
У									
$\cos \theta$									
(nearest									
tenth), y									

To graph the function $y = \cos \theta$, use values of θ expressed in either degrees or radians. These values represent the x values on a graph. Use the values of $\cos \theta$ expressed as a value rounded to the nearest tenth to represent the y values on the graph.

Ordered pairs for points on these graphs are of the form $(\theta, \cos \theta)$.

On the next page plot the points, $(\theta, \cos \theta)$. Connect the points with a smooth curve. This graph represents the graph of the cosine function.

Complete the following table for $tan \theta$. Remember: $tan \theta = \frac{sin \theta}{cos \theta}$

θ (degree)	N o	300	450	600	900	1200	1350	1500	1800
(ucgree)	U	50	75	00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	120	155	150	100
A									
(radian)									
x									
tan 0									
(exact)									
y									
tan 0									
(nearest									
tenth), y									

θ (degree)	2100	225º	240º	2700	3000	3150	3300	3600	3900
X	210	220	210	270	500	515	550	500	570
θ									
(radian)									
x									
tan $ heta$									
(exact)									
У									
tan $ heta$									
(nearest									
tenth), y									

To graph the function $y = tan \theta$, use values of θ expressed in either degrees or radians. These values represent the x values on a graph. Use the values of $tan \theta$ expressed as a value rounded to the nearest tenth to represent the y values on the graph.

Ordered pairs for points on these graphs are of the form $(\theta, \tan \theta)$.

On the back plot the points, $(\theta, tan \theta)$. Connect the points with a smooth curve. This graph represents the graph of the tangent function.

Name:	Date:	Hour:
Changing Amplitude & Period		
Sine & Cosine Functions		

For every ______ degrees or ______ radians, the sine and cosine functions <u>repeat</u> their values. We say the sine and cosine functions are <u>periodic</u>, each having a period of ______ degrees or ______ radians.

To change the period of a sine and cosine function a value must be placed before theta, b.

For example, $y = \sin 2\theta$. This function would have a period of $\frac{360/2\pi}{h} = \frac{360/2\pi}{2} = 180^{\circ} or \pi$

The <u>amplitude</u> is the midpoint from the highest point to the lowest point of the function. The graphs we constructed had an amplitude of 1.

To <u>change the amplitude</u> of a sine or cosine function the <u>coefficient</u>, <u>a</u>, must be changed.

For example, $y = 2\sin \theta$. This function would have an amplitude of 2. In other words, the maximum it would reach is 2 and the minimum it would reach is -2.

Tangent Functions

For every ______ degrees or ______ radians, the tangent functions <u>repeat</u> their values. We say the tangent functions are <u>periodic</u>, each having a period of ______ degrees or ______ radians.

To <u>change the</u> a value must be placed before theta, <u>b</u>. period of tangent function

For example, $y = \tan 2\theta$. This function would have a period of $\frac{180/\pi}{b} = \frac{180/\pi}{2} = 90^{\circ} or \frac{\pi}{2}$

Because the tangent is infinite in both directions, the tangent function has no amplitude.

Look at Nspire demonstration of this!

This same information is presented on the graphs of the sine and cosine functions below, where the horizontal axis shows the values of θ and the vertical axis shows the values of sin θ or cos θ .

Key Concept : Periodic Functions

For every ______ degrees or ______ radians, the sine and cosine functions repeat their values. We say the sine and cosine functions are periodic, each having a period of ______ degrees or ______ radians.

Remember:

Both sine and cosine have a maximum value of _____ and a minimum value of _____

Key Concept: Amplitude

The amplitude of the graph of a periodic function is the absolute vale of half the difference between its maximum value and its minimum value.

You try: Using the above information and your definition of amplitude, set up and expression as to how to time the amplitude of the graphs of the sine and cosine functions.

<u>13.6/14.1Homework</u> Part 1 What We Discovered

Formal Key Concepts: Amplitude and PeriodWordsFor functions of the form $y = a \sin b\theta$ and $y = a \cos b\theta$,
the amplitude is |a|, and the period is $\frac{360^{\circ}}{|b|}$ or $\frac{2\pi}{|b|}$.
For functions of the form $y = a \tan b$, the amplitude is not defined,
and the period is $\frac{180^{\circ}}{|b|}$ or $\frac{\pi}{|b|}$.Examples $y = 3 \sin 4\theta$
 $y = -6 \cos 5\theta$
 $y = 2 \tan \frac{1}{3}\theta$ amplitude 3 and period $\frac{360^{\circ}}{4}$ or 90°
 $x = 10^{\circ}$
mo amplitude and period 3π

1. What is the unit circle? How is a unit circle related to the graphed sine and cosine functions?

#2-9Tell whether each statement describes a characteristic of the sine function, cosine function, both functions or neither functions.

2. The function has a period of 360°	3. The function has an amplitude of 2.
4. The y-intercept is 1.	5. The y-intercept is 0.
6. The range of the function is $-1 \le y \le 1$.	7. The horizontal intercepts occur only at multiples of 90°
8. The function decreases in the interval $0^{\circ} \leq \theta \leq 90^{\circ}$	9. The function increases in the interval $0^{\circ} \le \theta \le 90^{\circ}$

10. Determine the period of each function.

Find the amplitude, if it exists, and the period for each function. Then graph each function. **11.** $y=4sin(2\theta)$

θ	У				
0°					
45°					
90°					
135°					
180°					
225°					
270°					
315°					
360°					
12. y=4cos($\frac{3}{4}\theta$)					

