
Objective: To construct the parent graphs of trigonometric functions for sine, cosine, and tangent using exact values.

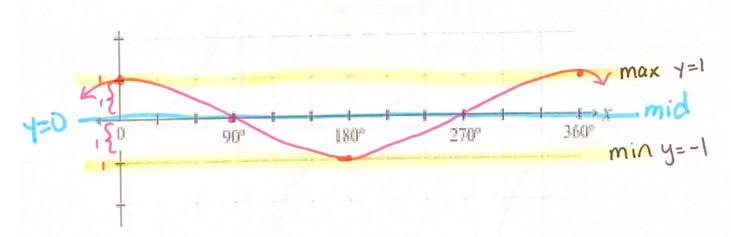
To graph the function $y=\sin\theta$, use values of θ expressed in either degrees or radians. These values represent the x values on a graph. Use the values of $\sin\theta$ expressed as a value rounded to the nearest tenth to represent the y values on the graph.

Ordered pairs for points on these graphs are of the form $(\theta, \sin \theta)$. (0,0) 90,1) (180,0) (270,-1 (0,0) 360 240° 315° 330° 180° 210° 270° 300° × 135° 150° 225° 00 30° 45° 60° 90° 120° $-\frac{\sqrt{3}}{2}$ $-\frac{\sqrt{3}}{2}$ 0 $\sin \theta$ 0 2 -0.5 -0.9 -0.7-0.5 -0.7-0.90.9 1 0.9 0.7 0.5 0.5 0.7 1/2 1 0.9 0.5 0.5 -0.5-0.7-0.9-0.9 -0.7-0.50.9 0.7 0 $-\sqrt{3}$ $\sqrt{3}$ nd $\sqrt{3}$ $\sqrt{3}$ $-\sqrt{3}$ -10 -1.7-1-0.60.6 1 1.7 nd -1 -0.60 0.6 1 1.7 -1.7nd 11π $\frac{3\pi}{4}$ $\frac{5\pi}{6}$ 7π 477 $\frac{3\pi}{2}$ <u>5π</u> $\frac{7\pi}{4}$ $\frac{2\pi}{3}$ 0

nd = not defined

On the graph below, plot the points, $(\theta, \sin \theta)$. Connect the points with a smooth curve. This graph represents the graph of the sine function.

Use	the	follov	ving t	able	for co	sθ.		(180,-1)				(210,0)				(340,1)			
0	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°		1
sin θ	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0		
nearest tenth	0	0.5	0.7	0.9	1	0.9	0.7	0.5	0	-0.5	-0.7	-0.9	-1	-0.9	-0.7	-0.5	0		COST
cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	-1	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1		
nearest tenth	1	0.9	0.7	0.5	0	-0.5	-0.7	-0.9	-1	-0.9	-0.7	-0.5	0	0.5	0.7	0.9	1	J	
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	nd	-√3	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	√3	nd	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0		
nearest tenth	0	0.6	1	1.7	nd	-1.7	-1	-0.6	0	0.6	1	1.7	nd	-1.7	-1	-0.6	0		
θ	0	<u>π</u>	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	<u>5π</u>	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	<u>5π</u> 3	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π		


nd = not defined

To graph the function $y = \cos \theta$, use values of θ expressed in either degrees or radians. These values represent the x values on a graph. Use the values of $\cos \theta$ expressed as a value rounded to the nearest tenth to represent the y values on the graph.

Ordered pairs for points on these graphs are of the form $(\theta,\cos\theta)$.

On the graph below, plot the points, $(\theta, \cos \theta)$. Connect the points with a smooth curve. This graph represents the graph of the cosine function.

$$y = \cos \theta$$

5

Starts OII) Max

Amplitude= ____

Period (interval)= 3UN 2TT goes through one period before it starts to repeat.

Music Have 5 Key Points

1. ma ×

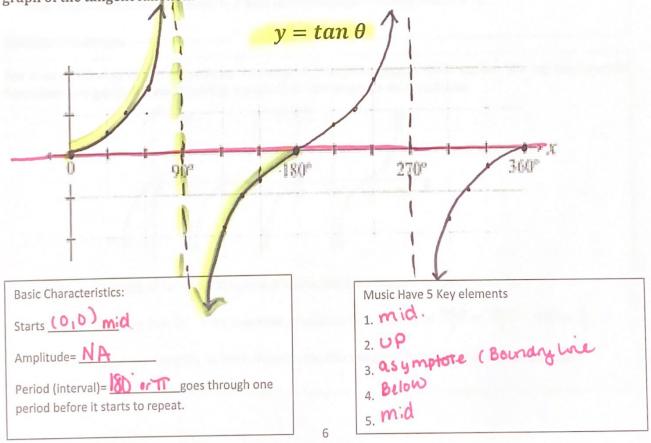
2. mid

3. min

4. mid

5. ma×

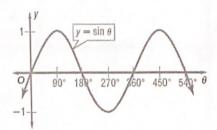
Complete the following table for $tan \theta$.

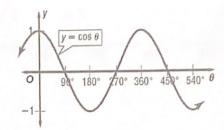

e th	ie fo	llowi	ng ta	ble fo	or tar	ιθ.							,,			((3/00)
	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
in 0	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
irest	0	0.5	0.7	0.9	1	0.9	0.7	0.5	0	-0.5	-0.7	-0.9	-1	-0.9	-0.7	-0.5	0
th is θ	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	-1	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	<u>-1</u>	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
arest ith	1	0.9	0.7	0.5	0	-0.5	-0.7	-0.9	-1	-0.9	-0.7	-0.5	0	0.5	0.7	0.9	1
ion in θ	0	<u>√3</u>	1	√3	nd	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	nd	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0
arest	0	0.6	1	1.7	nd	-1.7	-1	-0.6	0	0.6	1	1.7	nd	-1.7	-1	-0.6	0
nth 0	0	# 6	<u>π</u>	π 3	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	<u>3π</u>	<u>5π</u> 6	π	$\frac{7\pi}{6}$	<u>5π</u> 4	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	<u>5π</u> 3	$\frac{7\pi}{4}$	<u>11π</u> 6	2π

nd = not defined

To graph the function $y=tan\ \theta$, use values of θ expressed in either degrees or radians. These values represent the x values on a graph. Use the values of $\tan \theta$ expressed as a value rounded to the nearest tenth to represent the y values on the graph.

Ordered pairs for points on these graphs are of the form $(\theta, \tan \theta)$.


On the back plot the points, $(\theta, \tan \theta)$. Connect the points with a smooth curve, but there should be breaks in the graph where there is an "error" or undefined value. This graph represents the graph of the tangent function.



Name: _____ Changing Amplitude & Period

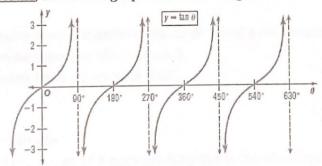
Sine & Cosine Functions

For every 360 degrees or 2π radians, the sine and cosine functions repeat their values. We say the sine and cosine functions are periodic, each having a period of 360 degrees or 2π radians.

Date: _____ Hour: ____

To change the period of a sine and cosine function a value must be placed before theta, $\underline{\mathbf{b}}$.

For example, $y = \sin 2\theta$. This function would have a period of $\frac{360/2\pi}{b} = \frac{360/2\pi}{2} = 180^{\circ}$ or π

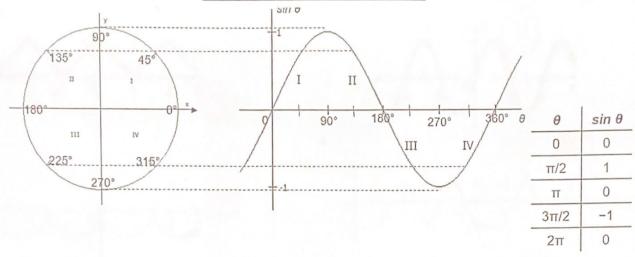

The <u>amplitude</u> is the midpoint from the highest point to the lowest point of the function. The graphs we constructed had an amplitude of 1.

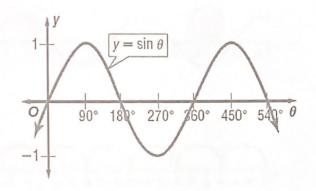
To change the amplitude of a sine or cosine function the coefficient, a, must be changed.

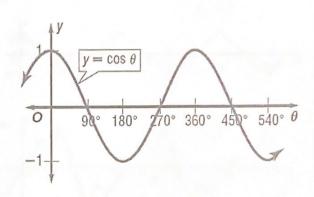
For example, $y = 2\sin\theta$. This function would have an amplitude of 2. In other words, the maximum it would reach is 2 and the minimum it would reach is -2.

Tangent Functions

For every 180 degrees or π radians, the tangent functions <u>repeat</u> their values. We say the tangent functions are <u>periodic</u>, each having a period of 180 degrees or π radians.




To change the period of tangent function a value must be placed before theta, b.


For example, $y = \tan 2\theta$. This function would have a period of $\frac{180/\pi}{b} = \frac{180/\pi}{2} = 90^{\circ}$ or $\frac{\pi}{2}$

Because the tangent is infinite in both directions, the tangent function has no amplitude.

Look at a demonstration of this!

Remember:

Both sine and cosine have a maximum value of 1 and a minimum value of -1.

Both sine and cosine have a midline at y = 0.

Both sine and cosine have a period of 360°.

Key Concept: Amplitude

The amplitude of the graph of a periodic function is the absolute vale of half the difference between its maximum value and its minimum value.

You try: Using the above information and your definition of amplitude, set up and expression as to how to time the amplitude of the graphs of the sine and cosine functions.