Construct a Kite.

1. Draw a line segment RT and construct a line which is a perpendicular bisector to segment RT.
2. Pick two different points on your perpendicular line and call them S and Q.
3. Then discuss how this can create a kite.
1.) Use a protractor to measure the angles formed by the intersection of $Q S$ and RT and measure all of the sides of your kite.
2.) Measure the interior angles of kite QRST. Are they congruent? If so, what ones?
3.) Label the intersection of $Q S$ and RT as point N. Find the lengths of $Q N, N S, T N$, and NR. How are they related?
4.) How many pairs of congruent triangles can be found in kite QRST?
5.) Determine whether the lines of the equations $y=4 x-3, y=7 x-60, x-4 y=-3$, and $x-7 y=-60$ determine the side of your kite, justify your reasoning.
Proving Kite and Trapezoid Properties
Directions: Use Kite ABCD to prove \#1-2.
1.) Write a proof by contradiction.

Given: $D C=D A, C B=A B, \angle D E C=90^{\circ}$
Prove: $\mathrm{DE} \neq \mathrm{EB}$

2.) Given: $\mathrm{DC}=\mathrm{DA}, \mathrm{CB}=\mathrm{AB}, \angle \mathrm{DEC}=90^{\circ}$

Prove: $\mathrm{m}<\mathrm{CBD}=\mathrm{m}<A B D$
3.) Given: $\overline{H J} \| \overline{G K}$,
$\triangle H G K \cong \triangle J K G, \overline{H G} \nVdash \overline{J K}$
Prove: GHJK is an isosceles
trapezoid.

4.) Given: $\triangle T Z X \cong \triangle Y X Z$, $\overline{W X} \nVdash \overline{Z Y}$
Prove: $X Y Z W$ is a trapezoid.

Name: \qquad Date: \qquad Hour: \qquad

ACC Geo: Kites and Irapezoíds Proofs \& Practice

1.) Use Kite $A B C D$

Given: $D C=D A, C B=A B,<D E C=90^{\circ}$
Prove: $m<C D E=m<A D E$

2.) Use Kite $A B C D$

Given: $\mathrm{DC}=\mathrm{DA}, \mathrm{CB}=\mathrm{AB}, \angle \mathrm{DEC}=90^{\circ}$
Prove: CE=EA
3.) Given: CDFG is an isosceles trapezoid with bases $C D$ and $F G$.

Prove: $m<D G F=m<C F G$

4.) Given: $Z Y X P$ is an isosceles trapezoid. Prove: $\triangle P W X$ is isosceles.

5.) Given: E is the midpoint of $A D$ and C is the midpoint of $D B . A D=D B$ and $m<A=m<1$. Prove: ABCD is an isosceles trapezoid.

