Law of Sines and Cosines Extra Homework

Directions: Complete #1-6 on a separate sheet of paper using the Law of Cosines!

In $\triangle RST$, given the following measures, find the measure of the missing side.

In
$$\triangle RST$$
, given the following measures, find the measure of the missing side.
1. $r = 5$, $s = 8$, $m \angle T = 39$

2. $r = 6$, $t = 11$, $m \angle S = 87$

3. $r = 9$, $t = 15$, $m \angle S = 103$

3. $r = 9$, $t = 15$, $m \angle S = 103$

4. $s = 12$, $t = 10$, $m \angle R = 58$

2. $s = 12$, $t = 10$, $s = 10$.

3. $s = 12$, $t = 10$, $s = 10$.

3. $s = 12$, $t = 10$, $s = 10$.

3. $s = 12$, $t = 10$, $t = 10$.

4. $s = 12$, $t = 10$, $t = 10$.

4. $s = 12$, $t = 10$, $t = 10$.

4. $s = 10$, $t = 10$.

4. $s = 10$, $t = 10$.

In $\triangle HIJ$, given the lengths of the sides, find the measure of the stated angle to the nearest tenth.

5.
$$h = 12, i = 18, j = 7; m \angle H$$

7. Mrs. Burge is planting a raspberry garden in the shape of a triangle to pay homage to her favorite subject in school. The side lengths are as follows: 50 feet, 60 feet, 100 feet. Mr. Giannini wants to find the measure of the largest angle. Help him!!! @ op. the greatest

 $50 = 50^{2} + 50^{2} - 2.50 = 50 = 0.50$ 5184 = 3000 - 5000 = 6 = 0.51 = 0.50 184 = 5000 - 5000 = 6 = 0.51 = 0.50 184 = -5000 = 0.50 -5000 = -5000 = 0.50 -5000 = -5000 = 0.50 -5000 = -5000 = 0.50 -5000 = -5000 = 0.50 -5000 = -5000 = 0.50

9. AIRCRAFT From the diagram of the airplane shown, determine the approximate exterior perimeter of each wing. Round to the nearest tenth meter.

20/50 10 X

 $x^2 = 20^2 + 20^2 - 2.20.20 \cos 50$ $x \approx 16.9m$

Find < H

Sin H = Sin (25) < H = Sin (25)

Sin (25)

Sin H = Sin (25)

Sin H = Sin (25)

Sin H = Sin (25)

Sin (25)

Sin H = Sin (25)

Sin H = Sin (25)

Sin H = Sin (25)

Sin (25)

Sin H = Sin

10. After the hurricane, the small tree in Mrs. Gross' neighbor's yard was leaning as she was hunkered down in her house. To keep it from falling, she nailed a 6-foot strap into the ground 4 feet from the base of the tree. She attached the strap to the tree 3 ½ feet above the ground.

How far from vertical was the tree leaning? X = 0.90How far from 90°

Was the tree $6^2 = 3.5^2 + 4^2 - 2.3.5 \cdot 4 \cos \theta$ leaving? $36 = 12.25 + 16 - 28 \cos \theta$ $36 = 28.25 - 28 \cos \theta$ $7.75 = -28 \cos \theta$ 9 = 65 - (7.75) 0 0 106.10He is leaning 16.1° past Vertical 47