Name:	

Hour:

Law of Sines Solving for a Triangle

<u>Homework:</u>

Directions: Round to the nearest tenth if needed.

1. The famous Leaning Tower of Pisa was originally 184.5 feet high. At a distance of 123 feet from the base of the tower, the angle of elevation to the top of the tower is found to be 60° . Solve the triangle and round to the nearest tenth.

m <c=< th=""><th></th><th></th></c=<>		
III ~ C ~		

$$m < A =$$

2. SOLVE the triangle. (Triangle PQR) $m \angle P = 89, p = 16, r = 12$

3. SOLVE the triangle. (Triangle PQR)

$$m \angle R = 49$$
, $m \angle Q = 76$, $r = 26$

Name:

Hour: _____

Law of Sines Solving for a Triangle

Homework:

Directions: Round to the nearest tenth if needed.

1. The famous Leaning Tower of Pisa was originally 184.5 feet high. At a distance of 123 feet from the base of the tower, the angle of elevation to the top of the tower is found to be 60° . Solve the triangle and round to the nearest tenth.

$$\frac{\sin(84.7)}{a} = \frac{\sin(60)}{184.5}$$

Hour: _____

2. SOLVE the triangle. (Triangle PQR)

$$m \angle P = 89, p = 16, r = 12$$

$$Sin(42.4) = Sin(89)$$
 $2R = 48.6$
 $16Sin(42.4) = 9Sin(89)$
 $2R = 48.6$

$$q = 10.8$$

$$16\sin(42.4) = 9\sin(6.42.4)$$

$$m \angle R = 49, m \angle Q = 76, r = 26$$

