N.T.		
Name:		
TIGHTIO.		

Period:

Making Conclusions

1. Given: $\overline{TO} \cong \overline{AN}$

skirt

Conclusion:

Justification:

2. Given: E is the midpoint of \overline{BD}

Conclusion:

Justification:_____

3. Given: A bisects \overline{CT}

Conclusion:

Justification:_____

4. Given: CO = OL

Conclusion:

Justification:

5. Given: $\angle DAY$ and $\angle YAK$ are a linear pair

Conclusion:

Justification:

6. Given: $\angle TOM$ is the supplement of $\angle SUE$

Conclusion:____

Justification:_____

7. Given:

Conclusion:

Justification:

8. Given:

Conclusion:____

Justification:

9. Given: E F G

Conclusion:

Justification:_____

10. Given:

Conclusion:

Justification:____

11. Given: $m \angle ABC = m \angle HIJ$

Conclusion:

Justification:_____

12. Given: $\angle CAT$ and $\angle RAP$ are vertical angles.

Conclusion:

Justification:

13. Given: $\angle SAT \cong \angle ACT$

Conclusion:_____

Justification:

14. Given: A is in the interior of $\angle GLD$

Conclusion:

Justification:

15. Given: $\overline{FA} \cong \overline{RM}$	8
Conclusion:	21. Given: 9
Justification:	Conclusion:
16. Given: ∠HAM is vertical to ∠EAT	Justification:
Conclusion:	MA. TIZ bisec
Justification:	M I IL Disec
0 0	22. Given:
R U N	Conclusion:
Conclusion:	Justification:
Justification:	23. Given: ∠PAI and ∠IAR are a linear pair
	Conclusion:
8	Justification:
18. Given;	24. Given: ∠ <i>CAT</i> and ∠ <i>RAP</i> are complementary
Conclusion:	
Justification:	angles.
19. Given: $m \angle NAT + m \angle WED = 90^{\circ}$	Conclusion:
Conclusion:	Justification:
Justification:	25. Given: $m \angle NAT + m \angle WED = 180^{\circ}$
<u> </u>	Conclusion:
20. Given: UB bisects $\angle RUY$	Justification:
Conclusion:	
Justification:	26. Given: A is between J and M
	Conclusion:
	1

"Making Conclusions" Worksheet continues on the next page...

For #27 and 28, a two column proof is given but **steps are missing**. Fill in the missing steps and **rewrite** the whole proof **correctly**.

Given: $\angle 1$ is supplementary to $\angle 2$, $\angle 3$ is supplementary

to $\angle 4$, and $\angle 2 \cong \angle 4$

Prove: $\angle 1 \cong \angle 3$

Statements		Reasons
1.	$\cancel{\cancel{L}}$ 1 & $\cancel{\cancel{L}}$ 2 are supp. $\cancel{\cancel{L}}$ 3 & $\cancel{\cancel{L}}$ 4 are supp.	Given
2.	$m \cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{$	Def. of Supplement.
3.	$m \angle 1 + m \angle 2 = m \angle 3 + m \angle 4$	
4.		
5.	$\overline{)}$	Skip step 5.
6.	$m \angle 1 + m \angle 4 = m \angle 3 + m \angle 4$	Substitution prop, Steps
7.	$m \angle 1 \cong m \angle 3$	Subtraction prop.

Given: $\angle 5$ is complementary to $\angle 7$

Prove: $\overline{MI} \perp \overline{IE}$

Statements		ements	Reasons	
	1.	∡5 & ∡7 are comp.	Given	
	2.	$m \measuredangle 5 + m \measuredangle 7 = 90^{\circ}$	Def. of complement.	
	3.			
	4.	<i>m</i> ∡ <i>MIE</i> = 90°	Substitution,	
	6.	$\overline{MI} \perp \overline{IE}$	Definition of perpendicular	

Name: Key

Period:____

Making Conclusions

1. Given: $\overline{TO} \cong \overline{AN}$

Conclusion: TO = AN

Justification: def of equality =

2. Given: E is the midpoint of \overline{BD}

Conclusion: BE = ED

Justification: det of midpt

3. Given: A bisects \overline{CT}

Conclusion: CA = AT

Justification: def of bisect

4. Given: CO = OL

Conclusion: CO 2 0 L

Justification: def of 2/equality

Given: ∠DAY and ∠YAK are a linear pair

Conclusion: <DAY+ <YAK=180

Justification: Interpoirs orl

6. Given: $\angle TOM$ is the supplement of $\angle SUE$

Conclusion: <TOM + <SUE = 180°

Justification: def of Suppl.

7. Given:

Conclusion: <5+<6=180

Justification: Ineor Pairs ore

Suppl.

8. Given:

Conclusion: $\sqrt{7+45} = 90^{\circ}$

Justification: def of compl.

9. Given: E F G

Conclusion: EG = EF + FG

Justification: Segment addition

10. Given:

Conclusion: <FEG = <FED + < DEG

Justification: ongle addition

11. Given: $m \angle ABC = m \angle HIJ$

Conclusion: < ABC = ZHIJ

Justification: clef of equality ≥

12. Given: $\angle CAT$ and $\angle RAP$ are vertical angles.

Conclusion: < CAT = < RAP

Justification: Vertical LS are

13. Given: $\angle SAT \cong \angle ACT$

Conclusion: M < SAT = M < ACT

Justification: def of equality/2

14. Given: A is in the interior of $\angle GLD$

Conclusion: <GLA+<LAD = <GLP

Justification: Angle Addition

"Making Conclusions" Worksheet continues on the next page...

For #27 and 28, a two column proof is given but **steps are missing**. Fill in the missing steps and **rewrite** the whole proof **correctly**.

Given: $\angle 1$ is supplementary to $\angle 2$, $\angle 3$ is supplementary

to $\angle 4$, and $\angle 2 \cong \angle 4$

Prove: $\angle 1 \cong \angle 3$

Statements	Reasons	
1. $\cancel{\cancel{\cancel{4}}}$ 1 & $\cancel{\cancel{\cancel{4}}}$ 2 are supp. $\cancel{\cancel{\cancel{4}}}$ 3 & $\cancel{\cancel{\cancel{4}}}$ 4 are supp.	Given	
2. $m \angle 1 + m \angle 2 = 180^{\circ}$ $m \angle 3 + m \angle 4 = 180^{\circ}$	Def. of Supplement.	
3. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 4$	Substitution	
4. <a≌≥4< td=""><td>Griven</td><td></td></a≌≥4<>	Griven	
5.		(def of = Step)
$6. \qquad m \angle 1 + m \angle 4 = m \angle 3 + m \angle 4$	Substitution prop, Steps	
7. <i>m</i> ∠1 ≅ <i>m</i> ∠3	Subtraction prop.	

28. M 7 E

Given: $\angle 5$ is complementary to $\angle 7$

Prove: $\overline{MI} \perp \overline{IE}$

Statements	Reasons	
1. ∠5 & ∠7 are comp.	Given	
$2. m \angle 5 + m \angle 7 = 90^{\circ}$	Def. of complement.	
3. 15+17=2MIE	ongle addition	
4. $m \angle MIE = 90^{\circ}$	Substitution	
6. $\overline{MI} \perp \overline{IE}$	Definition of perpendicular	