## Notes - Connecting Triangles & Trig

Name:

**Objective:** I understand how and why trig ratios remain constant, no matter the size of the special right triangle.

#### **Review & Warm Up**

Simplify the following expressions.

**1.** 
$$\sqrt{20}$$

2. 
$$\frac{6\sqrt{10}}{2}$$

3. 
$$\frac{2}{\sqrt{3}}$$

Find the missing side lengths of each of the special right triangles.

4.



5.



6.



Find the indicated trig ratio(s).

7.



$$sin(A) = \underline{\hspace{1cm}}$$

$$sin(B) = \underline{\hspace{1cm}}$$

$$cos(A) =$$

$$cos(B) = \underline{\hspace{1cm}}$$

$$tan(A) = \underline{\hspace{1cm}}$$

$$tan(B) = \underline{\hspace{1cm}}$$

#### **Explore**

All of the following are special right triangles. Find each of the indicated trig ratios. Simplify your answers.

8



$$sin(J) = \underline{\hspace{1cm}}$$

$$sin(K) = \underline{\hspace{1cm}}$$

$$cos(J) = \underline{\hspace{1cm}}$$

$$cos(K) = \underline{\hspace{1cm}}$$

$$tan(J) = \underline{\hspace{1cm}}$$

$$tan(K) = \underline{\hspace{1cm}}$$

9.



$$sin(X) = \underline{\hspace{1cm}}$$

$$sin(Y) = \underline{\hspace{1cm}}$$

$$cos(X) = \underline{\hspace{1cm}}$$

$$cos(Y) = \underline{\hspace{1cm}}$$

$$tan(X) = \underline{\hspace{1cm}}$$

$$tan(Y) = \underline{\hspace{1cm}}$$

10.



$$sin(B) = \underline{\hspace{1cm}}$$

$$cos(A) = \underline{\hspace{1cm}}$$

$$cos(B) = \underline{\hspace{1cm}}$$

$$tan(A) = \underline{\hspace{1cm}}$$

$$tan(B) = \underline{\hspace{1cm}}$$

11.



$$sin(X) = \underline{\hspace{1cm}}$$

$$sin(Y) = \underline{\hspace{1cm}}$$

$$cos(X) = \underline{\hspace{1cm}}$$

$$cos(Y) = \underline{\hspace{1cm}}$$

$$tan(X) = \underline{\hspace{1cm}}$$

$$tan(Y) = \underline{\hspace{1cm}}$$

**Summary** 

| sin(30°) = | sin(60°) = | sin(45°) = |
|------------|------------|------------|
| cos(30°) = | cos(60°) = | cos(45°) = |
| tan(30°) = | tan(60°) = | tan(45°) = |

**Practice** 

Find each unknown measure without using a calculator. It may be helpful to draw a picture if not provided.

**12.** 
$$sin(\theta) = \frac{\sqrt{2}}{2}$$
  $\theta = ?$ 

$$\theta = ?$$

**13.** 
$$cos(\theta) = \frac{\sqrt{3}}{2}$$
  $\theta = ?$ 

$$\theta = ?$$

**14.** 
$$sin(30^{\circ}) =$$

**15.** 
$$sin(60^{\circ}) =$$

**16.** 
$$cos(60^{\circ}) =$$

**17.** 
$$tan(60^{\circ}) =$$

**18.** 
$$cos(45^{\circ}) =$$

**19.** 
$$tan(45^{\circ}) =$$

# Homework - The Trig Connection

Name: \_\_\_\_\_

Fill in the side lengths of each of the special right triangles.

1.



2.



Find the indicated values using the triangle provided. Simplify your answers.

3.

D



 $DF = \underline{\hspace{1cm}}$ 

$$FE =$$

4.



*m*∠*J* = \_\_\_\_\_

$$KF = \underline{\hspace{1cm}}$$

5.

 *m*∠*X* = \_\_\_\_\_

$$sin(Y) = \underline{\hspace{1cm}}$$

$$cos(Y) = \underline{\hspace{1cm}}$$

6.



 $\theta =$ \_\_\_\_\_

$$cos(\theta) =$$
\_\_\_\_\_

$$tan(\theta) =$$
\_\_\_\_\_

7.



 $XY = \underline{\hspace{1cm}}$ 

$$cos(Y) = \underline{\hspace{1cm}}$$

$$tan(Y) = \underline{\hspace{1cm}}$$

8.



 $m \angle B = \underline{\hspace{1cm}}$ 

$$sin(B) =$$

$$tan(A) = \underline{\hspace{1cm}}$$

### **Rapid Practice**

Find the indicated values without using a calculator. A picture may be helpful, but no work is required. \*\*Hint\*\* Refer to the chart in the notes

**9.** 
$$sin(30^{\circ}) =$$

**10.** 
$$cos(30^{\circ}) =$$

**11.** 
$$tan(60^{\circ}) =$$

**12.** 
$$sin(45^{\circ}) =$$

**13.** 
$$tan(\theta) = 1$$
  $\theta = ?$ 

$$\theta = ?$$

**14.** 
$$tan(\theta) = \frac{\sqrt{3}}{3}$$
  $\theta = ?$ 

$$\theta = ?$$

**15.** 
$$cos(\theta) = \frac{\sqrt{2}}{2}$$
  $\theta = ?$ 

$$\theta = ?$$

**16.** 
$$sin(\theta) = \frac{\sqrt{3}}{2}$$
  $\theta = ?$ 

$$\theta = 3$$