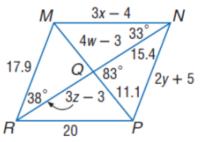
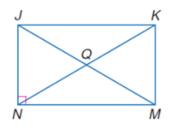
Acc: Parallelograms and Special Parallelograms Practice ${\rm Pg}~{\rm 329}$


Complete each statement about $\square ABCD$. Justify your answer.


15. $\angle DAB \cong \underline{?}$.**16.** $\angle ABD \cong \underline{?}$.**17.** $\overline{AB} \parallel \underline{?}$.**18.** $\overline{BG} \cong \underline{?}$.**19.** $\triangle ABD \cong \underline{?}$.**20.** $\angle ACD \cong \underline{?}$.

ALGEBRA Use *□MNPR* to find each measure or value. Round to the nearest tenth if necessary.

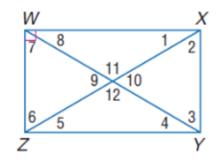
ALGEBRA Quadrilateral *JKMN* is a rectangle.

22. <i>m</i> ∠NRP
24. <i>m∠RMN</i>
26. <i>m∠MQR</i>
28. y
30. <i>z</i>

7. If NQ = 5x - 3 and QM = 4x + 6, find *NK*.

9. If NM = 8x - 14 and $JK = x^2 + 1$, find *JK*.

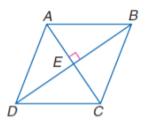
Pg 345


10. If $m \angle NJM = 2x - 3$ and $m \angle KJM = x + 5$, find *x*.

11. If $m \angle NKM = x^2 + 4$ and $m \angle KNM = x + 30$, find $m \angle JKN$.

12. If $m \angle JKN = 2x^2 + 2$ and $m \angle NKM = 14x$, find x.

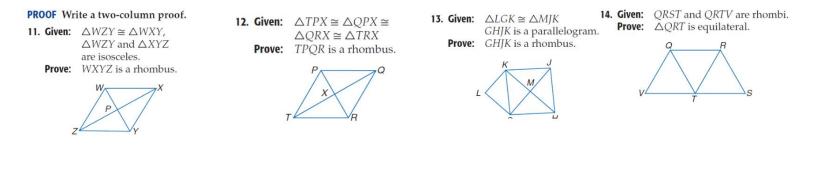
WXYZ is a rectangle. Find each measure if $m \angle 1 = 30$.


13. <i>m</i> ∠2	14. <i>m</i> ∠3	15. <i>m</i> ∠4
16. <i>m</i> ∠5	17. <i>m</i> ∠6	18. <i>m</i> ∠7
19. <i>m</i> ∠8	20. <i>m</i> ∠9	21. <i>m</i> ∠12

Pg 351

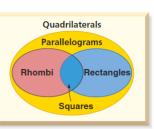
ALGEBRA In rhombus *ABCD*, AB = 2x + 3 and BC = 5x.

- **2.** Find *x*.
- **3.** Find *AD*.
- **4.** Find $m \angle AEB$.
- **5.** Find $m \angle BCD$ if $m \angle ABC = 83.2$.



Complete the following on a separate paper and show all of your work!

COORDINATE GEOMETRY Given each set of vertices, determine whether $\Box MNPQ$ is a *rhombus*, a *rectangle*, or a *square*. List all that apply. Explain your reasoning.


6.
$$M(0, 3), N(-3, 0), P(0, -3), Q(3, 0)$$

7. *M*(-4, 0), *N*(-3, 3), *P*(2, 2), *Q*(1, -1)

Use the Venn diagram to determine whether each statement is *always*, *sometimes*, or *never* true.

- **30.** A parallelogram is a square.
- **31.** A square is a rhombus.
- **32.** A rectangle is a parallelogram.
- **33.** A rhombus is a rectangle but not a square.
- **34.** A rhombus is a square.

