Congruent Triangles Review

Focus Practice Test

Short Answer

1. What does CPCTC stand for?

41

corresponding parts of congruent triangles are =

2. What are the two shortcuts that don't work to show two triangles are congruent?

+1

SSA

3. What are the five shortcuts that work to show that two triangles are congruent?

HL

SAS

SSS

AAS

ASA

ID: R

4. Identify the congruent triangles and name their corresponding congruent angles and sides. (CPCTC)

+3

+2

5. $\triangle KLM$ is an isosceles triangle and $\angle 1 \cong \angle 2$. Then name the shortcut that could be used to prove $\triangle LKP \cong \triangle LMN$. (Hint: Mark the figure with what you know.)

A <K = <M base <s of isosceles As = A <1 = <2 given

+1

6. Without finding any other angles or sides congruent, determine which pair of triangles can be proved to be congruent by the HL Theorem.

Use the figure.

SML =MN defob isosceles D A <L = <N base <S of Isosceles Ds S LT = TN def of miapt

7. If $\triangle LMN$ is isosceles and T is the midpoint of \overline{LN} , which shortcut can be used to prove $\triangle MLT \cong \triangle MNT$? (Hint: Mark the figure with what you know.) S MT & MT Reflexive

8. If $\overline{AF} \cong \overline{DE}$, $\overline{AB} \cong \overline{FC}$ and $\overline{AB} \parallel \overline{FC}$, which shortcut can be used to prove $\triangle ABE \cong \triangle FCD$?

SAB = FC given

ALA = LEFD corresponding Ls are =

SAE = FD segment addition

9. The rhombus *QRST* is made of two congruent triangles. Given $m \angle QRS = 34$ what is the measure of $\angle S$?

< S = 146° consecutive interior LS are Suppl.

11. If $\triangle ABC$ is isosceles and $\overline{AE} \cong \overline{FC}$, which shortcut can be used to prove $\triangle AEB \cong \triangle CFB$? (Hint: Mark the figure with what you know.)

SAE = FC given

A < A = C base < s of Isosceles As are =

SAB = CB def of isosceles.

Which triangles are congruent in the figure? By which shortcut are they congurent?

AKLJ Z ANLM KL≅NL]

LJ≅LM } given in

KJ≅NM } given in

13. If $\triangle DJL \cong \triangle EGS$, which segment in $\triangle EGS$ corresponds to \overline{DL} ?

Identify the congruent triangles in the figure. List the corresponding parts by what short cut do you know that the two triangles are congruent?

14.

MAUVW ZARST

15.

AMNO ZAJKL 2 corresponding ports

MNZJK <M ZZJ

NO ZKL <N ZZK

MO ZJL <OZLL

Use the figure below for the following question.

16. Which shortcut proves the triangles congruent?

S AD = YN

A <ADN = <YND alt. int <s are =

S ND = ND Reflexive

17. If $\triangle TGS \cong \triangle KEL$, which angle in $\triangle KEL$ corresponds to $\angle T$?

Use the figure below for the following question.

18. Which shortcut proves the triangle EGA and triangle IAG congruent?

S EG = IA given

A < EGA = < IAG given

S GA = GA Peflexive

Complete this two-column proof.

19. **Given:** $\triangle ABC$ is an isosceles triangle with base \overline{AC} .

D is the midpoint of \overline{AC} .

Prove: \overline{BD} bisects $\angle ABC$.

Statements Reasons

- 1. $\triangle ABC$ is isosceles with base \overline{AC} .
- **2.** $\overline{AB} \cong \overline{CB}$
- 3. $\angle A \cong \angle C$
- **4.** D is the midpoint of \overline{AC} .
- 5. $\overline{AD}\cong \overline{CD}$
- **6.** $\triangle ABD \cong \triangle CBD$
- **7.** ∠1 ≅ ∠2
- 8. \overline{BD} bisects $\angle ABC$.

- 1. given
- 2. def of isosceles A
- 3. base 25 of isosceles As are ~
- 4. alven
- 5. def of midpt
- 6. SAS
- 7. Coctc
- 8. defof & bisector

20. Complete the proof.

Given: *L* is the midpoint of \overline{JM} ; $\overline{JK} \parallel \overline{NM}$.

Prove: $\triangle JKL \cong \triangle MNL$

Statements	Reasons
1. L is the midpoint of \overline{JM} .	1. given
2. $\overline{JL} \cong \overline{ML}$	2. def of midpl
3. $\overline{JK} \parallel \overline{MN}$	3. given
4. $\angle JKL \cong \angle MNL$	4. alt. int 25 are
5. $\angle JLK \cong \angle MLN$	5. <u>Vertical</u> <5 are =
6. $\triangle JKL \simeq \triangle MNL$	6. AAS

