Name:	Hour:
Unit 3 Proofs!!!!!- Notes!!!	
There are 3 main types of proof: a).	You want proof? I'll give you proof)
b)	AKE DE SECONDARY OF THE PROPERTY OF THE PROPER
i.e. c)	nham, 216 Bir
Proof is a form of	reasoning.
In this class we will be usingand blank proofs.	and skeleton
What postulates or theorems do we al	ready know about segments?
Midpoint Theorem: If B is the midpoint of AC	the state of the s
Segment Addition: If B is between collinear	points A and C, then AB + BC=AC.
Angle Addition: If P is in the interior of <abc< td=""><td></td></abc<>	

NEW postulates or theorems about segments

Reflexive: $\overline{BC} \cong \overline{BC}$

Symmetric: If $\overline{BC} \cong \overline{AB}$ then, $\overline{AB} \cong \overline{BC}$

<u>Transitive</u>: If $\overline{XY} \cong \overline{AB}$ and $\overline{AB} \cong \overline{CD}$, then $\overline{XY} \cong \overline{CD}$

以上,第2.5

Congruence of angles is reflexive, symmetric, and transitive.

Reflexive Property ∠1 ≅ ∠1 X = X

Symmetric Property If $\angle 1 \cong \angle 2$, then $\angle 2 \cong \angle 1$. X = Y +hen Y = X

Transitive Property If $\angle 1 \cong \angle 2_x$ and $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 3$.

x=Y and y=z then x=z also called "substitution"

Proving Angle Relationships: Notes

Use Alternate Exterior Angles to prove Alternate Interior Angles are Congruent.

Prove: < 4 ≅< 5

- 1. p//l and m is a transversal of p and l
- $2. < 1 \cong < 8$
- $3. < 1 \cong < 4, < 8 \cong < 5$
- 5. _____

- 4. Substitution

Use Alternate Exterior Angles to prove **Corresponding Angles** are Congruent.

Given:

p//l and m is a transversal of p and l

Prove: $< 2 \cong < 6$

- 1. p//l and m is a transversal of p and l
- $2. < 2 \cong < 7$
- $3. < 7 \cong < 6$

- 4. _____

Prove **Consecutive Interior Angles** are supplementary.

Given: p/l and m is a transversal of p and l **Prove:** < 3 and < 5 are supplementary

Prove the **Triangle Sum Theorem**

Given: p//l and m is a transversal of p and l **Prove:** m < 5 + m < 2 + m < 6 = 180

When writing a proof always

- 1. write down the given statements
- 2. write what you can derive from the given
- 3. write down what you know from the picture
- 4. ALWAYS end with what you wanted to prove

***** Before you move on to the next step, remember to justify each statement you make.

Prove the following examples:

Example 1: If $\overline{PR} \cong \overline{QS}$, then $\overline{PQ} \cong \overline{RS}$.

- 1. $\overline{PR} \cong \overline{QS}$
- 2. PR = PQ + QRQS = QR + RS
- 3. PQ + QR = QR + RS

- 1. Given
- 2. Segment Addition
- 4. Subtraction.

Example 2: Civen: AD CE, DB SEB Prove ARECR

- 2. Segment Addition

3. CB= AD+DB, AB=AD+DB

- 3. Substitution

ex. 3

Given: $\overline{RU} \parallel \overline{ST}$

 $\overline{RS} \parallel \overline{UT}$

Prove: $\angle R = \angle T$

Example 4.) Angles!

Theorem: If two angles are supplementary to the same angle then they are congruent.

Given: $\angle 3$ and $\angle 4$ are supplementary; $\angle 3$ and $\angle 5$ are supplementary

Prove: ∠4 ≅ ∠5

- <3 and <4 are Supplementary 1 <3 and <3 are supplementary
- 1. Given

28.

- 2. def. of supplementary
- <3+<4=<3+<5

4. Subtraction

Parallels Cut by Transversals Proofs HW

1. Given: <7≅<1 and 1 // p

Prove: <5≅<3

2. <7≅<5, <3≅<1

4. <5≅<3

3. Substitution

2. Given: w // x and y // z

Prove: <1 and <4 are supplementary

$$4. < 3 + < 4 = 180$$

3. Given: $<1 \cong <2$ and 1 // pProve: $<3 + <4 = 180^{\circ}$

(Hint: you should have 5 steps)

Corresponding Angles Converse Postulate:

• If corresponding angles are ______ then the lines are _____.

Proof of the Alternate Exterior Angles Converse Theorem:

If alternate exterior angles are ______ then the lines are ______...

Given: $\angle 1 \cong \angle 2$ Prove: $c \parallel d$

Proof of the Consecutive Interior Angles Converse Theorem:

If consecutive interior angles are ______ then the lines are ______

Given: $\angle 1 \& \angle 2$ are supplementary

Prove: $c \parallel d$

Proof of the Alternate Interior Angles Converse Theorem:

• If alternate interior angles are ______ then the lines are _____.

Given: $\angle 1 \cong \angle 2$ Prove: $c \parallel d$

Proof of:

If two lines are ______ to the same line, then they are ______

Given: $l \perp t$ and $m \perp t$

Prove: $l \parallel m$

Example1: Determine which lines, if any, are parallel. State which postulate or theorem that justifies your answer.

- a) ∠16 ≅ ∠3
- b) $m \angle 14 + m \angle 10 = 180$

23. Given: $\angle 2 \cong \angle 1$ Prove: $\frac{\angle 1}{ST} \cong \frac{\angle 3}{UV}$

24. Given: $\overline{JM} \parallel \overline{KN}$ $\angle 1 \cong \angle 2$

Proving Lines Parallel HW

Given the following information, determine which lines, if any, are parallel. State the postulate or theorem that justifies your answer.

1.
$$73 \cong 77$$

$$2. \angle 9 \cong \angle 11$$

3.
$$\angle 2 = \angle 16$$

$$4. m \angle 5 + m \angle 12 = 180$$

Given: $\angle 1$ and $\angle 2$ are complementary.

$$\overline{BC} \perp \overline{CD}$$

Prove: $\overline{BA} \parallel \overline{CD}$

Proof:

Reasons

6. Given: $\angle 1 \cong \angle 2$, $\angle 1 \cong \angle 3$

Prove: $\overline{AB} \parallel \overline{DC}$

7. For Exercises 1-6, complete the proof.

Given: $\angle 1 \cong \angle 5$, $\angle 15 \cong \angle 5$

Prove: $\ell \parallel m, \tau \parallel s$

Statements	Reasons
$1. \angle 15 \cong \angle 5$	1
$2. \angle 13 \cong \angle 15$	2
3. ∠5 ≅ ∠13	3
$4. r \parallel s$	4
5,	_ 5. Given
6	_ 6. If corr ≜ are ≅, then lines .

8. Given:∠2 and ∠3 are supplementary.

Prove: $\overline{AB} \parallel \overline{CD}$

- 1._____
- 1. Given

2.

2

YEP only 2 steps!

Other Proof Review

9. **575000** (2)

अलामिक Write a two-column proof.

Given: $m \angle 1 = m \angle 2$, $m \angle 2 = m \angle 3$

Prove: $m \angle 1 = m \angle 3$

Proof:

10. Given: \overline{AC} bisects $\angle BAD$.

 \overline{AC} bisects $\angle BCD$.

 $\angle 1 \cong \angle 2$

Prove: $\angle 3 \cong \angle 4$

Practice 2.8

Write a two-column proof for each of the following.

Given: $\angle 1 = \angle 4$

Prove: $\angle 3$ and $\angle 2$ are supplements.

Given: $\overline{AB} \perp \overline{BD}$

 \overrightarrow{BD} bisects $\angle EBC$.

 $\angle 1$ and $\angle 3$ are complements.

Given: $\angle 1 = \angle 2$ $\angle 3 = \angle 4$

Prove: $\angle 1 = \angle 4$

- \angle 1 and \angle 2 are complements. \angle 3 and \angle 4 are complements. Given:
- ∠1 = ∠4 Prove:

- Given: $\angle 4$ and $\angle 5$ are supplements. $\angle 2 = \angle 3$
- Prove: $\angle 2 = \angle 5$

- Given: $\angle 1 = \angle 2$
- Prove: $\overrightarrow{LI} \perp \overrightarrow{NE}$

In-Class Proof Practice #1

 In the figure, ∠1 and ∠2 form a linear pair and ∠2 and ∠3 form a linear pair. Prove that ∠1 and ∠3 are congruent.

Given: ∠1 and ∠2 form a linear pair. ∠2 and ∠3 form a linear pair.

Prove: ∠1 ≅ ∠3

2. Given: ∠ABD ≅ ∠YXZ
Prove: ∠CBD ≅ ∠WXZ

- 3. **Given:** X is the midpoint of \overline{WY} . **Prove:** WX + YZ = XZ

In-Class Proof Practice #2

Ex5.) Prove: If <6 and <8 are complementary, the <7 is a right angle.

Ex 6.) Given: $m\angle RSW == m\angle TSU$ Prove: $m\angle RST == m\angle WSU$

Ex. 7) Given: \overline{VX} bisects $\angle WVY$.

₩ bisects ∠XVZ.

Prove: ∠WVX ≅ ∠YVZ

Ex.8) PROOF Write a two-column proof.

Given: ∠1 and ∠2 form a linear pair

 $m\angle 2 = 2(m\angle 1)$

Prove: *m*∠1 == 60

Date: __

1. If AB = BC, then AC = 2BC.

2. DESIGN The front of a building has a triangular window. If \(\overline{AB} \approx \overline{DE}\) and C is the midpoint of \(\overline{BD}\), prove that \(\overline{AC} \approx \overline{CE}\).

3. Given: ∠5 ≅ ∠6 Prove: ∠4 ≅ ∠7

4. UGHTING In the light fixture, $\overline{AB} \cong \overline{EF}$ and $\overline{BC} \cong \overline{DE}$. Prove that $\overline{AC} \cong \overline{DF}$.

		*
		•