Trite a two column proof for the following problems.

1. Given: M is the midpoint of \overline{AB} and \overline{PQ}

- 1. Mis midpt of 1. given AB + PO
- a. def of midpt
- 3. < PMA = ZOMB 3. Vertical LS =
- 4. DAPM = DOBM 4. SAS

2. Given: \overline{NT} is parallel and \cong to \overline{MO} Prove: $\Delta MON \cong \Delta TNO < M \cong \angle T$

- 1. NTIIMO NTZMO
- 2. NO = NO
- a. reflexive
- 3. KNOMEKTNO
- 3. act int. 2s are =
- 4. A MONEATNO H. SAS
- Cpctc

3. Given: \overline{VW} is parallel and \cong to \overline{YZ} Prove: $\Delta XVW \cong \Delta XYZ$

2. <∨ ≅ <Z <₩ ≅ <Y 2. act int Ls =

3. AXVW MAXYZ 3. ASA

4. Given: \overline{PO} is parallel to \overline{IT} , $\langle O \cong \langle T \rangle$ $\overline{PI} \cong \overline{TO}$ Prove: $\Delta PIT \cong \Delta TOP$ $PO \cong TT$

PO//IT, 20=21 1. given PI=TO 2.0PT~ (ITD 2. acti

BOT postale

2. <OPT = VITP 2.5 PT = PT 3. \(\Delta \text{PIT} \subseteq \Delta \text{TOP} \) 2. act int. LS = 2.5 reflexive 3. AAS

H. PO ≃ IT

4. cpc+c

5. Given: PS is the angle bisector of < QPR, < QSR ∠RSP
Prove: APQS ≅ APRS OS ≅ SR S is midpt
OF CQR

R

1. PS is ∠bisector
1. given

2. PS≅ PS
2. Ceptexive

POSYAPRS 3. ASP

nidpt of 5. def of midpt

OR

Write a two column proof for the following problems.

1. Given: M is the midpoint of \overline{AB} and \overline{PQ} Prove: $\Delta APM \cong \Delta QBM$

2. Given: \overline{NT} is parallel and \cong to \overline{MO} Prove: $< M \cong < T$

4. Given: \overline{PO} is parallel to \overline{IT} $\overline{PI} \cong \overline{TO}$

<O ≅ <I

Prove: $PO \cong IT$

5. Given: \overline{PS} is the angle bisector of $\langle QPR \rangle < QSP \cong \langle RSP \rangle$

Prove: S is the midpoint of QR

