Study Guide and Intervention (continued)

The Pythagorean Theorem and Its Converse

Converse of the Pythagorean Theorem If the sum of the squares of the measures of the two shorter sides of a triangle equals the square of the measure of the longest side, then the triangle is a right triangle.

If the three whole numbers a, b, and c satisfy the equation $a^2 + b^2 = c^2$, then the numbers a, b, and c form a Pythagorean triple.

If $a^2 + b^2 = c^2$, then $\triangle ABC$ is a right triangle.

(Example)

Determine whether $\triangle PQR$ is a right triangle.

$$a^2 + b^2 \stackrel{?}{=} c^2$$

Pythagorean Theorem

$$10^2 + (10\sqrt{3})^2 \stackrel{?}{=} 20^2$$

$$a = 10, b = 10\sqrt{3}, c = 20$$

Simplify.

$$400 = 400 \checkmark$$

Add.

$$400 = 400 \checkmark$$
 Add

The sum of the squares of the two shorter sides equals the square of the longest side, so the triangle is a right triangle.

19X(1)(0)(2)(17)

Determine whether each set of measures can be the measures of the sides of a right triangle. Then state whether they form a Pythagorean triple.

yes, yes

no, no

yes, yes

5.
$$\frac{3}{7}$$
, $\frac{4}{7}$, $\frac{5}{7}$

7.
$$\sqrt{5}$$
, $\sqrt{12}$, $\sqrt{13}$

8. 2,
$$\sqrt{8}$$
, $\sqrt{12}$

A family of Pythagorean triples consists of multiples of known triples. For each Pythagorean triple, find two triples in the same family.

20,40,50

Radical Homework

Directions: Simplify each radical. Remember, no decimals and NO RADICALS in the denominator! Circle your final answers!

$$1.\frac{\sqrt{15}}{\sqrt{20}} = \frac{\sqrt{3} \cdot 1\cancel{5}}{\cancel{0} \cdot 1\cancel{5}} = \boxed{\frac{\sqrt{3}}{2}}$$

$$2.\frac{\sqrt{10}}{\sqrt{32}} = \sqrt{5} + \sqrt$$

$$\sqrt{30}$$
3. $\frac{2\sqrt{6}}{4\sqrt{8}}$

$$\sqrt{30} = 4\sqrt{3}$$
4. $\frac{3\sqrt{16}}{2\sqrt{25}} = \frac{3\cdot 4}{2\cdot 5} = \frac{12}{10} = \frac{6}{5}$

Directions: Solve for each variable. Make sure your answer is in simplified radical form without any radicals in the denominator.

5.
$$15 = x\sqrt{3}$$
 $\chi = \frac{5}{3}$ $\sqrt{5}$ $\sqrt{3}$ $\sqrt{5}$ $\sqrt{3}$

6.
$$24 = x\sqrt{2} \qquad \qquad \begin{array}{c} 24\sqrt{2} \\ 3\sqrt{2} \\ 3\sqrt{2} \end{array}$$

$$8. \qquad 8 = x\sqrt{3}$$

$$\sqrt{3}$$

$$\sqrt{3}$$

9.
$$50 = x\sqrt{2}$$

$$10. \quad 21 = x\sqrt{8}$$

$$\sqrt{3} \quad \sqrt{8}$$

$$- \sqrt{1/3}$$