Quadratics Review (3 terms)

"Aussie" Method AKA Magic Method AKA Factor MD

Seems strange at first. But if you get the pattern it will always work for you!!!

ALWAYS factor out the GCF 1st (if possible)!

Example:

 $20x^2 + 22x - 12$ has a GCF of 2 – factor it out! $2(10x^2 + 11x - 6)$

- 1. Draw 2 sets of parenthesis and place x's in them.
- 2. Multiply the coefficients (#s) from the first and last terms. (a and c)
- 3. Determine which number pair will get you BOTH the sum as the MIDDLE term (the x term) and the product as the number you got in step 3
- 4. Place the two #'s from step 2 & 3 in the parenthesis.
- 5. Divide the numbers that you just placed in the parenthesis by the original lead coefficient (a) then simplify any fractions
- 6. If it does not divide evenly, and take the value of the denominator and move it in front of the x within
- 7. To solve: set both factors (the two sets of parentheses) equal to zero and solve both equations, this will give you your solutions. ©

Example: $10x^2 + 11x - 6$

Multiply a
$$\circ$$
 c $10 \circ -6$ -60 Find 15 $= -60$ -4 $+$ 15 $= 11$

Step 4:
$$(x-4)(x+15)$$

Step 5:
$$(x - \frac{4}{10})(x + \frac{15}{10})$$
 now simplify $(x - \frac{2}{5})(x + \frac{3}{2})$

Step 6:

Since there are fractions left, you must move 5 and 2 in front of the x's (5x-2)(2x+3), STOP HERE IF DIRECTIONS SAY FACTOR

IF THE DIRECTIONS SAY SOLVE, SET EACH = 0:

$$(2x + 3) = 0$$
 and $(5x - 2) = 0$
 $2x = -3$ $5x = 2$
 $x = \frac{-3}{2}$ and $x = \frac{2}{5}$

Factoring Examples

1.
$$5x^2 + 36x + 7$$

 $(x + \frac{35}{5})(x + \frac{1}{5})$
 $(x + 7)(5x + 1)$

$$a \cdot c = 5 \cdot 7 = 35$$

$$35 \cdot 7 = 35$$

$$4 + 7 = 36$$

2.
$$7x^2 - 30x + 8$$

 $(x - 28)(x - 2)$
 $(x - 4)(7x - 2)$

$$a \cdot c = 7 \cdot 8 = 56$$

$$-28 + -2 = -30$$

Directions: Solve by Factoring.

3.
$$2x^{2}-7x+3=0$$

$$(x-16)(x-1)=0$$

$$(x-3)(2x-1)=0$$

$$x-3=0 \quad 2x-1=0$$

$$x=3 \quad x=\frac{1}{2}$$
4. $5x^{2}-7x+2=0$

$$(x-5)(x-2)=0$$

$$(x-1)(5x-2)=0$$

5.
$$3x^{2} - 15x + 12 = 0$$

$$\left(\begin{array}{c} (X - \frac{3}{3}) \left(X - \frac{12}{3} \right) = 0 \\ (X - 1) \left(X - 4 \right) = 0 \\ \hline X = 1 \quad X = 4 \end{array} \right)$$

$$-3$$
 -12 = 36
-3 + -12 = -15

Quadratics: Prefect Square Binomials Factor Together

1.
$$16x^2 - 81$$

(4x - 9)(4x + 9)

Solve Together

2.
$$9x^2 - 4 = 0$$

 $(3x + 2)(3x - 2) = 0$
 $3x + 2 = 0$
 $x = -\frac{2}{3}$
 $x = -\frac{2}{3}$

Segment Examples:

1. B lies between A and C on a segment AC. If AC = 44, $AB = 3x^2$, and $BC = 2x^2 - 6x + 45$, find the value of x and the length of BC.

Check Work HERE:

A B C
$$-5 \cdot -1 = +5$$
 Check $x = 1$

AB + BC = AC Seg. addim

AB + BC = AC Seg. addim

 $3x^2 + 3x^2 - 6x + 45 = 44$
 $5x^2 - 6x + 45 = 44$
 5

2. M is the midpoint of segment LN. If LM = $3x^2$ - 7x and MN = x^2 - 3 find the value of x, length of LM, MN,

$$\frac{3x^2-7x}{M} \times \frac{x^2-3}{N}$$

LM = MN def of midpt

$$3x^{2}-7x = x^{2}-3$$

$$2x^{2}-7x+3=0$$

$$(x-6)(x-1)=0$$

$$(x-3)(2x-1)=0$$

$$x=3$$

$$x=\frac{1}{2}$$

Check Work HERE:

3. N is between A and K. AN = t^2 + 2t, NK = t^2 + 9t - 25 and AK = 2t + 38. Find t and the length of each segment.

$$t^{2}+2t$$
 $t^{2}+9t-25$

A N K

6.t + 38

=
$$0 + 38$$
 Check Work HERE: $1 = \frac{9}{2}$

A N + N K = A K

 $(4.5)^2 + 2(4.5) + 4.5^2 + 9(4.5) + 4.5^2 + 9(4.5)$

AN+NK = AK Segment addition t2+2t+t2+9t-25= 2t2 + 11t - 25 = 6t + 38 a.c=-126

$$2t^{2} + 5t - 63 = 0$$

$$(t - 9)(t + 14) = 0$$

$$(2t - 9)(t + 7) = 0$$

$$2t-9=0$$
 $t+7=0$
 $t=\frac{9}{2}$ $t=-7$

$$2t^{2} + 5t - 63 = 0$$
 $0.c = 126$ $0.c =$

Warm Up: Illustrate the following.

1. < 1 and < 2 are linear pairs

3. <LMN is a right angle

