SLR, PR, AR, and VR Notes

Calculating Perimeter, Area, and Volume Ratios of Similar Figures

Recall:

Side Length Ratio = SLR

Perimeter Ratio = PR

Scale Factor = SF

Area Ratio = AR Volume Ratio = VR

$$SLR = SF = PR$$

SLR = 3 $AR = SLR^2 \qquad AR = (\frac{4}{3})^2$

This means: $SLR = \sqrt{AR}$ $AR = \frac{1}{2}$

 $VR = SLR^{3}$ This means: $SLR = \sqrt[3]{VR}$ $VR = (\frac{1}{3})^{3}$

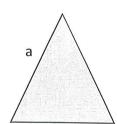
Why are Side Length Ratio, Scale Factor, and Perimeter Ratio all equal?

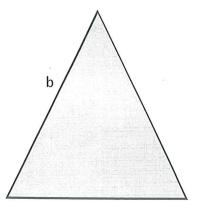
1 Dimensum

Why is the Area Ratio equal to the Side Length Ratio squared?

2D

Why is the Volume Ratio equal to the Side Length Ratio cubed?

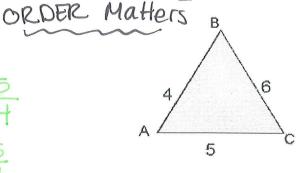


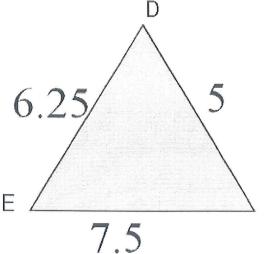

Perimeters & Areas of Similar Figures

If the similarity (side) ratio of 2 similar figures is a/b, then

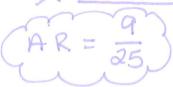
The ratio of their perimeters is _

The ratio of their areas is


Example 1: Find the ratio of the Perimeter and the Area (Larger to Smaller figure)


 $\triangle ABC \sim \triangle FDE$

Perimeter Ratio =
$$\frac{5}{4}$$


Area Ratio =
$$\frac{25}{9}$$

Example 2:

3/5 The ratio of the corresponding midsegments of 2 similar trapezoids are 4:5. What is the ratio of their areas?

Example 3:

The corresponding heights of two similar cylinders are 2:5. What is the ratio of their volumes?

$$SLR = \frac{2}{5}$$

$$VR = \left(\frac{2}{5}\right)^3$$

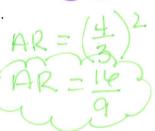
won
$$+$$
 $\vee R = S \cup R^3$
 $\vee R = \begin{pmatrix} 2 \\ 5 \end{pmatrix}^3$
 $\vee R = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$

Example 4:

The ratio of the areas of two similar pentagons is 4:9. What is the ratio of their corresponding sides?

$$AR = \frac{4}{9}$$

$$SLR = \frac{2}{3}$$


Example 5:

The area ratio of a geometric solid is 9:16, find the volume ratio.

Example 6:

The volume ratio of a triangular prism (3D solid) is 512/216. Find the area ratio.

