SLR, PR, AR and VR Applied Notes

Solving for Unknown Values Using Proportions

1.) Find the area.

The ratio of the lengths of the corresponding sides of 2 regular octagons is 8/3. The area of the larger octagon is 320ft². Find the area of the smaller octagon.

$$AR = (\frac{8}{3})^2 = \frac{64}{9}$$

$$64x = 9(320)$$

 $64x = 2.880$

2.) Find the side ratio.

The areas of 2 similar pentagons are 32in² and 72in². What is their similarity (side) ratio? What is the ratio of their perimeter?

eir perimeter?

$$AR = \frac{32}{72} = \frac{4}{9}$$
 Simplified

3.) Find the perimeter & area of similar figures.

The similarity (side) ratio of two similar Δ is 5:3. The perimeter of the smaller Δ is 36cm, and its area is 18cm². Find the perimeter & area of the larger Δ .

$$SLh = \frac{5}{3} = P$$

$$\therefore \lambda$$

$$AR = \frac{85}{9}$$

Perimeter
$$\frac{5}{3} = \frac{x}{36}$$

$$180 = 3x$$

$$160cm = x$$

$$AREA$$

 $\frac{25}{9} = \frac{x}{18}$
 $450 = 9x$
 $50 \text{ cm}^2 = x$

4.) Find the volume.

The triangular prisms are similar and the ratio of a to b is $\frac{5}{2}$.

Volume of large prism = 250 cm^3

5.) Find the radius.

The right cylinders are similar and r = 10 cm.

Volume of large cylinder = 64 cm

Volume of small cylinder = 8 cm

Pg 419 # 1, 2, 8-10, 12, 13

Directions: Find the perimeter of the given triangle.

$$\frac{X}{10} = \frac{2}{1} \left[X = 20 \text{ cm} \right]$$
well,

1. Find the perimeter of ΔDEF , if $\Delta ABC \sim \Delta DEF$. Where AB = 5, BC = 6, AC = 7, and DE = 3

$$PR = SLR$$
 $P = 3$
 $P = 3$
 $P = 10.8$
 $P = 54$
 $P = 54$
 $P = 54$

2. Find the perimeter of Δ WZX, if Δ WZX \sim Δ SRT. Where ST = 6, WX = 5, and the perimeter of Δ SRT = 15 units.

$$PR = SLR$$
 $P = \frac{5}{15}$
 $P = \frac{15}{15}$
 $P = \frac{75}{15}$

8. Find the perimeter of $\triangle BCD$, if $\triangle BCD \sim \triangle FDE$. Where CD = 12, FD = 5, FE = 4, and DE = 8.

$$\frac{PR = SLR}{17} = \frac{12}{8}$$

9. Find the perimeter of $\triangle ADF$, if $\triangle ADF \sim \triangle BCE$. Where BC = 24, EB = 12, CE = 18, and DF = 21.

$$\frac{P}{54} = \frac{21}{18}$$

10. Find the perimeter of \triangle CBH, if \triangle CBH \sim \triangle FEH and ADEG is a parallelogram. Where CH = 7, FH = 10, FE = 11, and EH = 6.

$$\frac{P}{27} = \frac{7}{10}$$

$$10p = 189$$

12. Find the perimeter of $\triangle ABC$, if $\triangle ABC \sim \triangle CBD$. Where CD = 4, BD = 3, and CB = 5.

$$\frac{P}{12} = \frac{5}{3}$$