Similarity CNotes

What are similar figures?

The notation for similar is like a congruence symbol but without the $=$. $\Delta A B C \sim \Delta X Y Z$ reads triangle $A B C$ is similar to triangle $X Y Z$

Side ___ corresponds to side \qquad
Side \qquad corresponds to side \qquad

Side \qquad corresponds to side ____

Side \qquad corresponds to side \qquad
Set up the corresponding sides as a ratio:

Their ratios form proportions. We use the proportions to state two equal ratios. When we talk about the ratios above we call them side length ratios or scale factor.

COMMON ERROR!!!!!! (write the common error below)

In addition to the sides being proportional, the corresponding angles \qquad .

That means $\mathrm{m}<$ \qquad $=\mathrm{m}<$ \qquad

Example \#1A

Set up side length ratios (scale factors) for each side length. Simplify each fraction.

Are they similar? Why or why not? \qquad

Similar Figures

Some similar images may not look similar because they are rotated or reflected.

So, take your time when identifying corresponding sides.

Example \#1B

Which sides are corresponding? Set up the scale factors (ratios) Must show the geometry AND the number ratios:

Are the triangles similar? Why or why not?

Show the sides are proportional, but these figures are not similar because
\qquad _.

Example 2

$<$ \qquad corresponds to < \qquad and both are \qquad
$<$ \qquad corresponds to < \qquad and both are \qquad
$<$ \qquad corresponds to < \qquad and both are \qquad
$<$ \qquad corresponds to < \qquad and both are \qquad

Set up ratios for corresponding sides- Must show the geometry AND the number ratios!:

Are the two figures similar? Why or why not?

