Study Guide and Intervention

Special Right Triangles

Properties of 45°-45°-90° Triangles The sides of a 45°-45°-90° right triangle have a special relationship.

Example 1 If the leg of a 45°-45°-90° right triangle is x units, show that the hypotenuse is $x\sqrt{2}$ units.

Using the Pythagorean Theorem with a = b = x, then

$$c^{2} = a^{2} + b^{2}$$

$$= x^{2} + x^{2}$$

$$= 2x^{2}$$

$$c = \sqrt{2x^{2}}$$

$$= x\sqrt{2}$$

Example 2 In a 45°-45°-90° right triangle the hypotenuse is $\sqrt{2}$ times the leg. If the hypotenuse is 6 units, find the length of each leg.

The hypotenuse is $\sqrt{2}$ times the leg, so divide the length of the hypotenuse by $\sqrt{2}$.

$$a = \frac{6}{\sqrt{2}}$$

$$= \frac{6\sqrt{2}}{\sqrt{2}\sqrt{2}}$$

$$= \frac{6\sqrt{2}}{2}$$

$$= 3\sqrt{2} \text{ units}$$

Exercises

Find x.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

7. Find the perimeter of a square with diagonal 12 centimeters.

X=60

9. Find the diagonal of a square with perimeter 28 meters.

Study Guide and Intervention (continued)

Special Right Triangles

Properties of 30°-60°-90° Triangles The sides of a 30°-60°-90° right triangle also have a special relationship.

(Example 1 In a 30°-60°-90° right triangle, show that the hypotenuse is twice the shorter leg and the longer leg is $\sqrt{3}$ times the shorter leg.

 $\triangle MNQ$ is a 30°-60°-90° right triangle, and the length of the hypotenuse MN is two times the length of the shorter side NQ. Using the Pythagorean Theorem,

$$a^{2} = (2x)^{2} - x^{2}$$

$$= 4x^{2} - x^{2}$$

$$= 3x^{2}$$

$$a = \sqrt{3x^{2}}$$

$$= x\sqrt{3}$$

Example 2 In a 30°-60°-90° right triangle, the hypotenuse is 5 centimeters. Find the lengths of the other two sides of the triangle.

If the hypotenuse of a 30°-60°-90° right triangle is 5 centimeters, then the length of the shorter leg is half of 5 or 2.5 centimeters. The length of the longer leg is $\sqrt{3}$ times the length of the shorter leg, or $(2.5)(\sqrt{3})$ centimeters.

Exercises

Find x and y.

- 7. The perimeter of an equilateral triangle is 32 centimeters. Find the length of an altitude of the triangle to the nearest tenth of a centimeter.
- 8. An altitude of an equilateral triangle is 8.3 meters. Find the perimeter of the triangle to the nearest tenth of a meter.

Glencoe Geometry

Skills Practice

Special Right Triangles

Find the exact values of x and y.

X=8

For Exercises 7-9, use the figure at the right.

7. If a = 11, find b and c.

8. If b = 15, find a and c.

9. If c = 9, find a and b.

$$a = 4.5$$

For Exercises 10 and 11, use the figure at the right.

10. The perimeter of the square is 30 inches. Find the length of \overline{BC} .

EG=103

11. Find the length of the diagonal \overline{BD} .

12. The perimeter of the equilateral triangle is 60 meters. Find the length of an altitude.

13. $\triangle GEC$ is a 30°-60°-90° triangle with right angle at E, and \overline{EC} is the longer leg. Find the coordinates of G in Quadrant I for E(1, 1)and C(4, 1).

