10-5 Tangent Notes

A line, line segment, or ray that intersects a circle in exactly ON\€. g‘ﬁ@\rﬁ is the
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Example 1: ED is tangent to Circle F at point E. Find x.
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Example 2:
a) Determine whether MN is tangent to Circle L.

Justify your reasoning. 5 {
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W e F }f b)  Determine whether PQ is tangent to Circle R. Justify your reasoning.
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Congruent Tangents

If two segments from the same exterior point are
they are congruent,

tangent to a circle, then

Example 3: Find x. Assume that segments that appeal tangent to circles are tangent.
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Circumscribed Polygons

#L0

-

\\ W SO0 A

AT - A O
¢ pelrt /i V= K D
Qx ~(‘1_ oce
‘.]7 O £ ,‘,\ _\\\ 4{/) ;, ~‘ ;) — "“;: \ = oW

QI

L P
AN = 2
& o . %’»( +o - D
7 Ko SONE
¢ 7'\ (’\‘ln\ v Nee O ) ) “7 )
i AN A L
O\ ‘V ‘\(\\ 6 €% A Q7

o \ = 4

Polygons can also be CI U :nb(’d about a circle, or the circle is Jmcﬂb_d in the polygon.

The vertices of the polygon DO NOT lie on the circle, but every side of the polygon is :m\%_e(\’\' |

to the circle.

Example 4: Triangle ADC is circumscribed about Circle O. Find the perimeter of Triangle ADC

if EC = DE + AF. -

0 BEC = DF + AF
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Name:

Circles —Day 5

ii a secant and a t«mgcnt mtersect at
the point of tangency, then the measure
of each angle formed is one-half the
measure of its intercepted arc.

Examples: m/ABC = %mé?f
mZDBC = %méi’f

Find mZABC if mAB = 102.

Example 1. .
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Example 3:
Two Tangents
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Example 4:

SATELLITES Suppose a satellite
S orbits above Earth rotating
‘o that it appears to hover
directly over the equator.

Use the figure to determine
the arc measure on the
equator visible to this satellite.
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X = 7 (owrside —inside) |
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