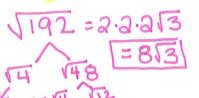
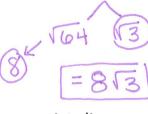
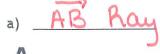

RTI Geometry Unit 1 \(\sqrt{Segments} \) Segments and Transformations Review

Name Answer Key


Hour

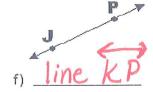

Directions: All work must be shown to receive full credit.

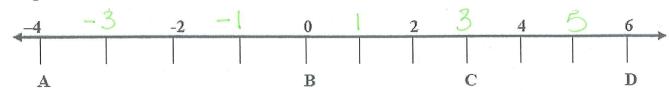
V192


This is DUE:

Both ways!

2) Describe the figure as a point, line, segment, or ray.




S

For questions 3-8, refer to the number line below to find each measure.

3. AB \(\frac{1}{2}\)

6. CB 3

4. CD 3

7. DA 10

5. BD 6

8. AC

Ask your self: "Self, are these midpoints?" If Yes, Set = if "no" Add them up and set = to the largest length.

Find the value of the variable and ST if S is between R and T. Let RS = 16, ST = 2x, RT = 5x + 10. You must start this problem with a geometry step. Show all of your work.

$$RS + ST = RT$$

$$RS + ST = RT$$

$$10 + 2x = 5x + 10$$

$$-2x - 2x$$

$$10 = 3x + 10$$

$$-10 - 10$$

$$6 = 3x$$

$$6 = 3x$$

$$5T = 2x$$

$$3 = 3$$

$$5T = 2x$$

$$5T = 2$$

$$2 = x$$

$$2 = x$$

$$5T = 2$$

10) Find the value of x and SR if R is between S and T. SR = 3x, RT = 2x + 1, ST = 6x - 1. You must start this problem with a geometry step. Show all of your work.

$$SR + RT = ST$$

$$3x + 2x + 1 = 6x - 1$$

$$5x + 1 = 6x - 1$$

$$+1 + 1$$

$$5x + 2 = 6x$$

$$-5x - 5x$$

$$2 = x$$

$$R = 3(x)$$

$$SR = 3(2)$$

$$SR = 3(2)$$

11) Find the value of x and \overline{ST} using the figure to the right. You must start this problem with a geometry step. Show all of your work.

$$ST + TU = SU$$

$$2x+1+3x-5=21$$

$$\frac{CLT}{5x-4=21}$$
 $5x-4=21$
 $5x=25$

$$ST = QX + 1$$

 $ST = Q(S) + 1$
 $ST = 11$

$$\frac{x = 5}{ST = 11}$$

$$5x = 25$$

$$5x = 25$$

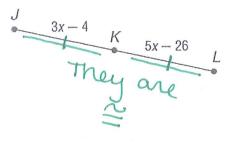
$$5$$

12) Find x and the measure of \overline{JK} if K is the midpoint of \overline{JL} . You must start this problem with a geometry step. Show all of your work.

$$JK \cong KL$$

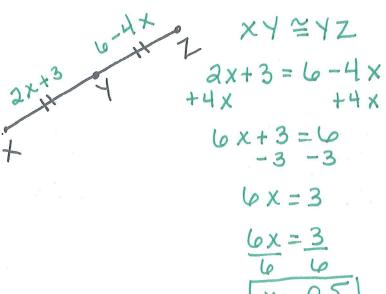
$$3x-H=5x-26$$

$$-3x$$


$$-4=2x-26$$

$$+26+26$$

$$22=2x$$


$$21=x$$

$$11=x$$

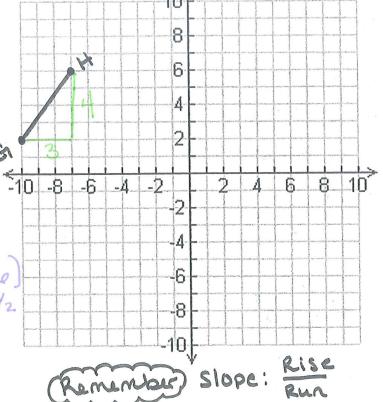
$$X=11$$
 $JK = 3(11) - 4$
 $JK = 29$
 $JK = 29$

13) Find XY if Y is the midpoint of \overline{XZ} , XY = 2x + 3 and YZ = 6 - 4x. You must start this problem with a geometry step. Show all of your work.

$$\begin{array}{c} x = 0.5 \\ \text{or} \\ x = \frac{1}{2} \end{array}$$

Find the distance, midpoint, and slope of each segment. You must show work, simplify all radicals

and fractions!


Distance:
$$3^2 + 4^2 = c^2$$

 $9 + 16 = c^2$
 $\sqrt{25} = \sqrt{c^2}$

Distance:
$$5$$
 units Midpoint: $(-\frac{17}{2}, \frac{4}{4})$

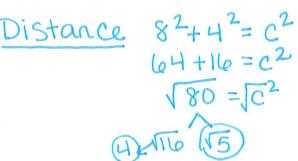
Midpoint:
$$\begin{pmatrix} -17 & 4 \end{pmatrix}$$

$$(-10+-7,2+6)$$

$$\left(-\frac{17}{2}\right)\frac{8}{2}$$
 simplify

Remember Slope: Rise

distance is a2+b2=c2


midpoint is $\left(\frac{X_1+X_2}{2}, \frac{Y_1+Y_2}{2}\right)$

Slope =
$$\frac{\text{rise}}{\text{run}} = -\frac{8}{4} = -2$$

10

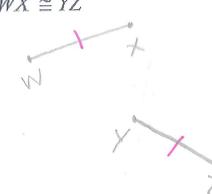
6

15) J(4, 2), K(8, -6)

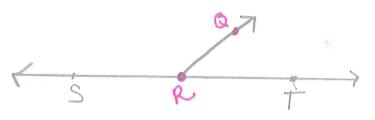
Distance: 45 Midpoint: (6,-2) Emake Sure -10-8-6-4-2 Midpoint: (6,-2) Emisis a point.

Slope: $\frac{-2}{\text{midpoint}}$ (x_1+x_2, y_1+y_2) $J(y_1, y_2)$, $K(x_1-x_2, y_2)$ X_1, y_1, x_2, y_2 (y_1+y_2)

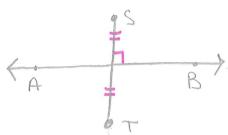
$$(4+8, 2+-6) = (12, -4) = (6, -2)$$

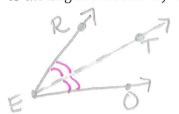

16) Draw FEDDC many different 17) Draw WX = YZ

Perpendicular Looking Answers

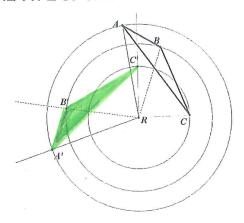

to Questions, the

Important markings


one in PINK

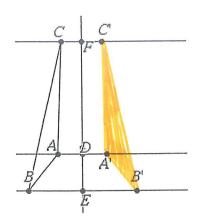

18) Draw < QRS and < QRT are a linear pair

19) Draw \overrightarrow{AB} is a \perp bisector of \overline{ST}


20) Draw \overrightarrow{ET} is an angle bisector of $\angle REO$

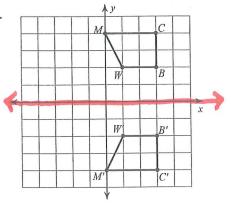
CONSTRUCTIONS OF TRANSFORMATIONS — YOU WILL NEED TO CONSTRUCT TRANSFORMATIONS!!!!!!!!!!!

21. FINISH THE CONSTRUCTION


NAME THE TYPE OF TRANSFORMATION

Rotation

22. FINISH THE CONSTRUCTION.

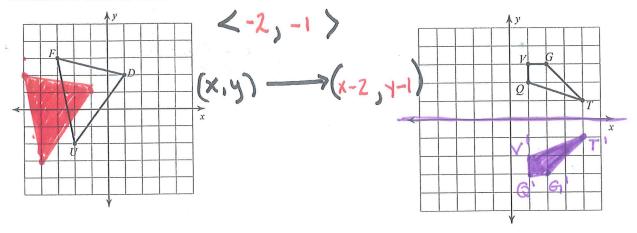

NAME THE TYPE OF TRANSFORMATION


Reflection

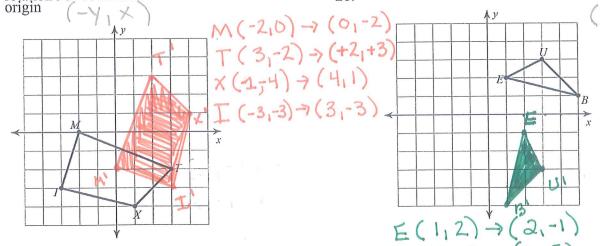
Draw in the line of reflection for 23 through 24.

23.

24.

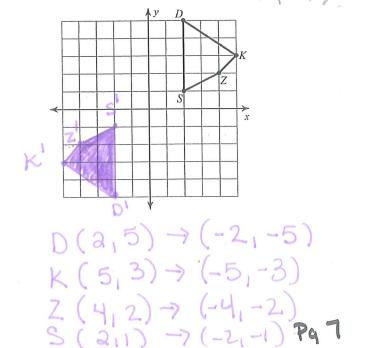


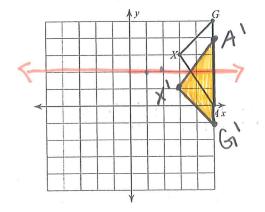
P9 6

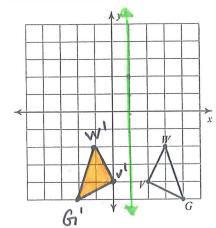

Graph the transformation for 25 through 32. If it is a translation, write the rule for the translation. in Vector and p+ form

25. translation: 2 units left and 1 unit down

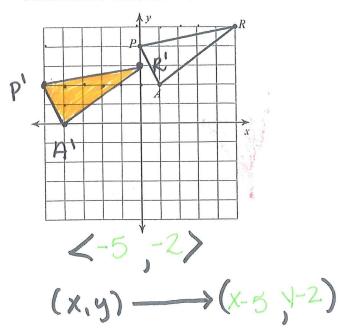
26. Reflection across the x-axis

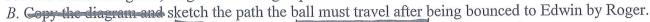


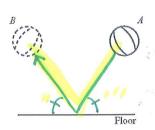

- 27. rotation 90° counterclockwise about the origin
- 28. rotation 90° clockwise about the origin


- 29. rotation 180° about the origin $\left(-\chi, -\gamma\right)$ 30.
- reflection across y = 2

B(5,1) -> (1,-5)




31. reflection across x = 1

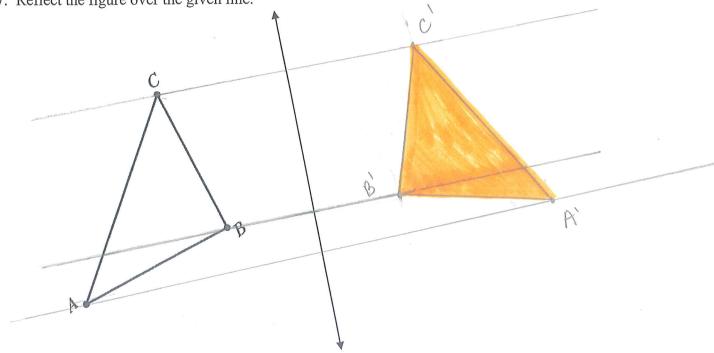


32. translation: 5 units left and 2 units down

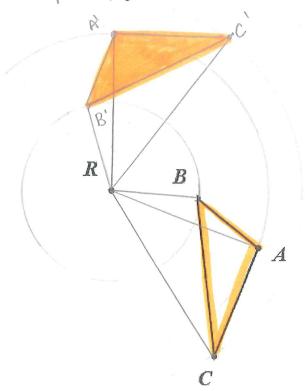
33. In a basketball game, Roger is standing at position A and he bounces the ball to Edwin standing at position

34. Find the slopes of lines. Simplify all fractions, if possible.

$$S(6,5)$$
, $T(-4,3)$ $X(-4,2)$, $Y(-3,-3)$

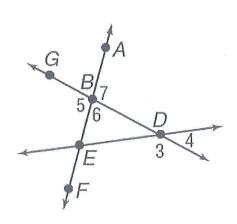

Slope ST:
$$\frac{3-5}{4-40} = \frac{-2}{-10} = \frac{1}{5}$$
 Slope formula

Slope
$$XY = \frac{-3-2}{-3-4} = \frac{-5}{1}$$


Slope of XY: ______

35. The composite of reflections over two parallel lines results in a <u>translation</u> .		
From 1 to 2 the transformation performed is:		3
From 2 to 3 the transformation performed is: Reflection	2	
From 1 to 3 the transformation performed is:	ı	
36. The composite of reflections over two intersecting lines results in a Rotation	<u>∿</u> .	
This is a composite of transformations.	ΛÌ	
From 2 to 3 the transformation performed is: Reflection		2
From 1 to 3 the transformation performed is:		

37. Reflect the figure over the given line.


38. Rotate the figure 110 degrees counterclockwise around point R

ES Summer Work and Middle School Review:

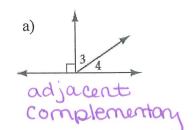
If you are struggling, look in Swamer work, google, Book, LOTS of places to find Help for this REVIEW material.

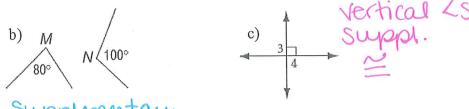
Use the figure to answer questions 1-4.

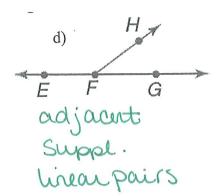
1) Name all angles that have B as a vertex.

2) Name a pair of supplementary angles. (Linear Pairs)

3) Name a pair of vertical angles.


Linear pairs are supplementary




5) Name all the different ways to name line \overrightarrow{AB} .

BE BE FE

6) Classify all that apply: adjacent, vertical, linear pairs, complementary, supplementary, right angle and/or congruent.

Transformations – Day	

Name:

Hour: _____

Equations and Slopes of Parallel and Perpendicular Lines

Parallel have same slopes

Perpendicular have opposite reciprocal slopes

Determine whether \overrightarrow{MN} and \overrightarrow{RS} are parallel, perpendicular, or neither.

1. M(0, 3), N(2, 4), R(2, 1), S(8, 4)

2. M(-1, 3), N(0, 5), R(2, 1), S(6, -1)

Sets of work Slope MN: 1/2
for each quistion Slope RS: 1/2
use the Slope formula!

Slope MN: $\frac{2}{1/2}$ Slope RS: $\frac{1}{1/2}$

 $M = \frac{\chi_2 - \chi_1}{\chi_2 - \chi_1}$

3. M(-1, 3), N(4, 4), R(3, 1), S(-2, 2)

4. M(0, -3), N(-2, -7), R(2, 1), S(0, -3)

Slope MN: $\frac{1}{5}$ Slope RS: $\frac{1}{5}$

Slope RS: 2

Find the slope of \overrightarrow{MN} and the slope of any line perpendicular to \overrightarrow{MN} .

7. M(2, -4), N(-2, -1)

8. *M*(1, 3), *N*(-1, 5)

Slope of \overrightarrow{MN} : $\frac{3}{4}$

Slope of \overrightarrow{MN} :

 \perp slope: $\frac{4}{3}$

⊥ slope: _____

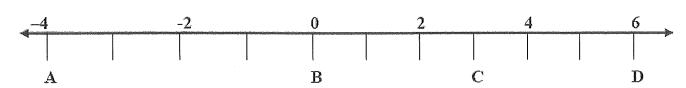
Hour _____

Directions: All work must be shown to receive full credit.

1) Simplify the radical: $\sqrt{192}$

2) Describe the figure as a point, line, segment, or ray.



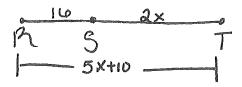


For questions 3-8, refer to the number line below to find each measure.

3. AB

6. CB

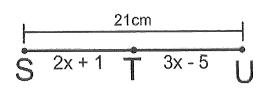
4. CD

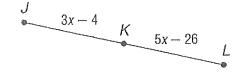

7. DA

5. BD

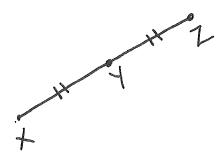
8. AC

Ask your self: "Self, are these midpoints?" If Yes, Set = if "no" Add them up and set = to the largest length.


9) Find the value of the variable and ST if S is between R and T. Let RS = 16, ST = 2x, RT = 5x + 10. You must start this problem with a geometry step. Show all of your work.

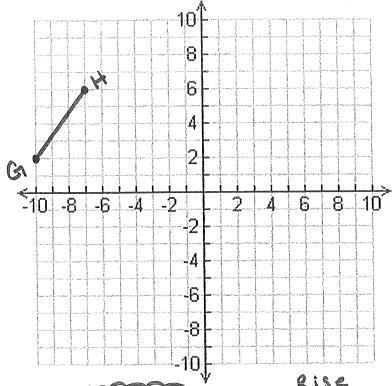

10) Find the value of x and SR if R is between S and T. SR = 3x, RT = 2x + 1, ST = 6x - 1. You must start this problem with a geometry step. Show all of your work.

	<u> </u>	
S	R	


11) Find the value of x and \overline{ST} using the figure to the right. You must start this problem with a geometry step. Show all of your work.

12) Find x and the measure of \overline{JK} if K is the midpoint of \overline{JL} . You must start this problem with a geometry step. Show all of your work.

13) Find XY if Y is the midpoint of \overline{XZ} , XY = 2x + 3 and YZ = 6 - 4x. You must start this problem with a geometry step. Show all of your work.

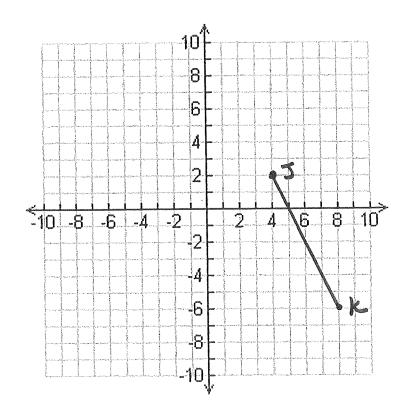

Find the distance, midpoint, and slope of each segment. You must show work, simplify all radicals and fractions!

14) G(-10, 2), H(-7, 6)

Distance:

Midpoint:_____

Slope: _____



distance is a2 +b2=c2

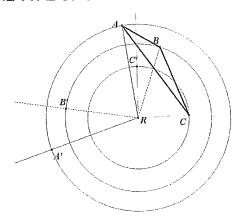
Distance:

Midpoint:_____

Slope:

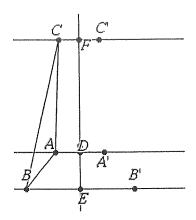
16) Draw
$$\overline{FE} \perp \overline{DC}$$

$$_{17)\,\mathrm{Draw}}\ \overline{WX}\cong \overline{YZ}$$

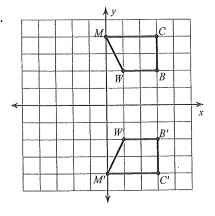

- 18) Draw < QRS and < QRT are a linear pair
- 19) Draw \overrightarrow{AB} is a \perp bisector of \overline{ST}

20) Draw \overrightarrow{ET} is an angle bisector of $\angle REO$

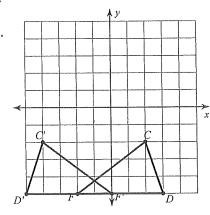
CONSTRUCTIONS OF TRANSFORMATIONS — YOU WILL NEED TO CONSTRUCT TRANSFORMATIONS!!!!!!!!!!


21. FINISH THE CONSTRUCTION

NAME THE TYPE OF TRANSFORMATION

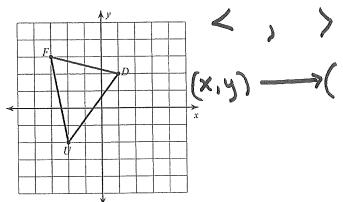

22. FINISH THE CONSTRUCTION.

NAME THE TYPE OF TRANSFORMATION

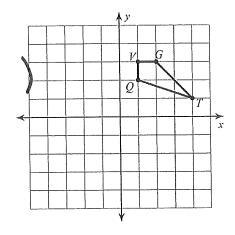


Draw in the line of reflection for 23 through 24.

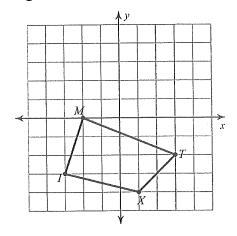
23.

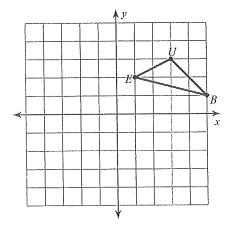


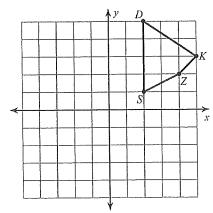
24.

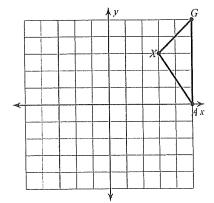


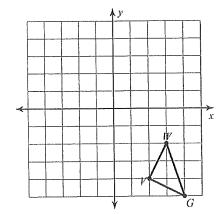
Graph the transformation for 25 through 32. If it is a translation, write the rule for the translation. in Vector

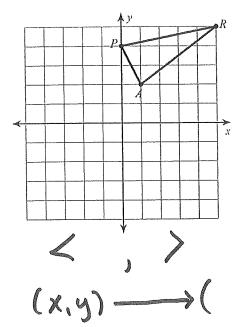

25. translation: 2 units left and 1 unit down


26. Reflection across the x-axis


27. rotation 90° counterclockwise about the origin


28. rotation 90° clockwise about the origin


29. rotation 180° about the origin


30. reflection across y = 2

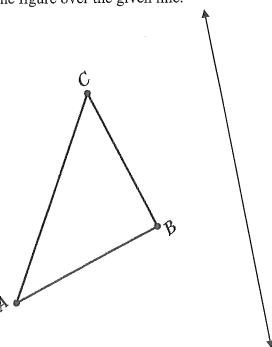
31. reflection across x = 1

32. translation: 5 units left and 2 units down

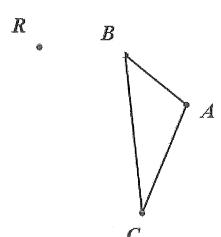
- 33. In a basketball game, Roger is standing at position A and he bounces the ball to Edwin standing at position
- B. Copy the diagram and sketch the path the ball must travel after being bounced to Edwin by Roger.

Floor

34. Find the slopes of lines. Simplify all fractions, if possible.


S(6, 5), T(-4, 3) X(-4,2), Y(-3,-3)

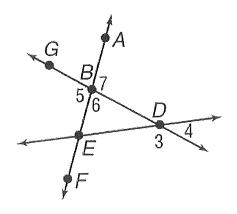
Slope of ST:


Slope of XY:

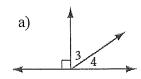
35. The composite of reflections over two parallel lines results in a			
From 1 to 2 the transformation performed is :	1		3
From 2 to 3 the transformation performed is :	•	2	
From 1 to 3 the transformation performed is :		ļ	
36. The composite of reflections over two intersecting lines results in a _		•	
This is a composite of transformations.	1	1 !	2
From 1 to 2 the transformation performed is:			
From 2 to 3 the transformation performed is :	·	7	d
From 1 to 3 the transformation performed is :	And the second second		
		,	3

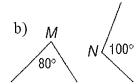
37. Reflect the figure over the given line.

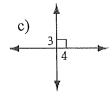
38. Rotate the figure 110 degrees counterclockwise around point R

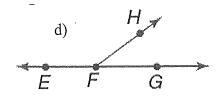


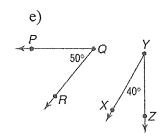
ES Summer Work and Middle School Review:

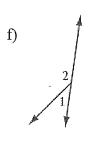

If you are struggling, look in summer work, google, Book, LOTS of places to find Help for this REVIEW material.


Use the figure to answer questions 1-4.


1)Name all angles that have B as a vertex.




- 2) Name a pair of supplementary angles.
- 3)Name a pair of vertical angles.
- 4)Name a linear pair.
- 5) Name all the different ways to name line \overleftrightarrow{AB} .
- 6) Classify all that apply: adjacent, vertical, linear pairs, complementary, supplementary, right angle and/or congruent.



This page is

	Transformatio	ns – Day
Name:		Hour:
Name.		

Equations and Slopes of Parallel and Perpendicular Lines

Parallel have same slopes
Perpendicular have opposite reciprocal slopes

Determine whether \overrightarrow{MN} and \overrightarrow{RS} are parallel, perpendicular, or neither.

1.
$$M(0, 3), N(2, 4), R(2, 1), S(8, 4)$$

2.
$$M(-1, 3), N(0, 5), R(2, 1), S(6, -1)$$

Slope MN: ____

Slope RS: ____

3.
$$M(-1, 3), N(4, 4), R(3, 1), S(-2, 2)$$

4. M(0, -3), N(-2, -7), R(2, 1), S(0, -3)

Slope MN: ____

Slope MN: ____

Slope RS: ____

Slope RS: ____

Find the slope of \overrightarrow{MN} and the slope of any line perpendicular to \overrightarrow{MN} .

7.
$$M(2, -4), N(-2, -1)$$

8.
$$M(1, 3), N(-1, 5)$$

Slope of \overrightarrow{MN} : ____

Slope of \overrightarrow{MN} : ____

⊥ slope: _____

⊥ slope: ____