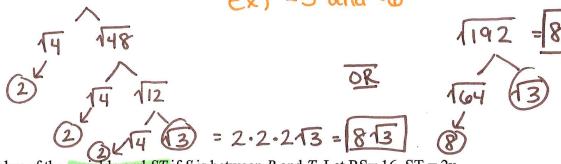

Hour

Directions: Use the figure to answer questions 1-3.

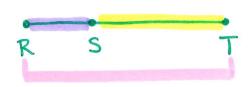
Students must review vocabulary as vocabulary will be assessed on the test. ³

1) Name all angles that have B as a vertex.

<7, <6, <5, < ABG
(straight angles: < ABE + < GBD)</pre>


2) Name a pair of supplementary angles.

Answers will vary ex) <3+24 = 180°


3) Name a pair of vertical angles.

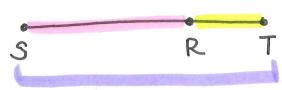
Answers will vary ex) 45 and 46

4) Simplify the radical: $\sqrt{192}$

5) Find the value of the variable and ST if S is between R and T. Let RS = 16, ST = 2x, RT = 5x + 10. You must show all of your work, justify, and show geometry.

RS + ST = RT segment addition

$$16 + 2x = 5x + 10$$


$$16 = 3x + 10$$

$$6 = 3x$$

$$x = 2$$

$$ST = (2)(2) = 4$$

6) Find the value of x and SR if R is between S and T. SR = 3x, RT = 2x + 1, ST = 6x - 1. You must show all of your work, justify, and show geometry.

$$3x + 2x + 1 = 6x - 1$$

$$5x+1=6x-1$$

$$= x-1$$
 $2 = x$

7) Using the picture to the right, find the length of \overline{XY} . You must show all of your work, justify, and show geometry.

$$x = 2.4 \text{ cm}$$

8) Find the value of x and ST using the figure to the right if T is the midpoint of SU. You must show all of your work, justify, and show geometry.

$$2x+1 = 3x-5$$

$$1 = x - 5$$

9) Find the value(s) of x and \overline{ST} using the figure to the right if T is the midpoint of SU, $ST = (x - 4)^2$, and TU = 9cm. You must show all of your work, justify, check your answers, and show geometry.

ST = TU def of midpoint
ST = TU def of midpoint

$$(x-4)^2 = 9$$

Check: $x=7$
 $(x-4)^2 = 3^2 = 9 \lor = ST$
 $(x-4)(x-4) = 9$
 $(x-4)(x-4) = 9$
 $(x-4)^2 = 3^2 = 9 \lor = ST$
 $(x-4)(x-4) = 9$
 $(x-4)(x-4) = 9$
 $(x-4)(x-4) = 9$
 $(x-4)^2 = 3^2 = 9 \lor = ST$
 $(x-4)(x-4) = 9$
 $(x-7)(x-1) = 0$
 $(x-7)(x-1) = 0$

10) Find the value(s) of x and BC. You must show all of your work, justify, check your answers, and show geometry.

80m -
$$x^2 + 2x + 4x + 40 = 80$$

 $x^2 + 6x + 40 = 80$
 $x^2 + 6x + 40 = 0$
 $x^2 + 6x - 40 = 0$
 $(x - 4)(x + 10) = 0$
 $x - 4 = 0$ $x + 10 = 0$
 $x - 4 = 0$ $x + 10 = 0$

check
$$x=4$$

BC = $4^2+2(4)=24$

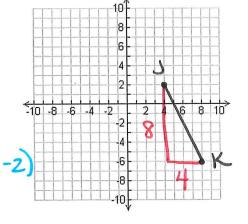
CD = $4(4)+40=56$
 $24+56=80$

check
$$x \neq -10$$

BC = $(-10)^2 + 2(-10) = 80$

CD = $4(-10) + 40 = 0$

Segment cannot have a length of 0.


Directions: Find the distance, midpoint, and slope of each segment. You must simplify radicals and

fractions!

dist: $8^2 + 4^2 = x^2$ $64 + 16 = x^2$ $180 = x^2$ 4 = 116

midpt:

$$(4+8, 2+(-6))$$

 $=(\frac{12}{2}, \frac{-4}{2})=(6, -2)$

Distance: 415 units

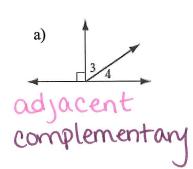
Midpoint: (6, -2)

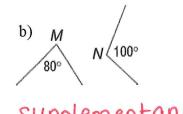
Slope: ______

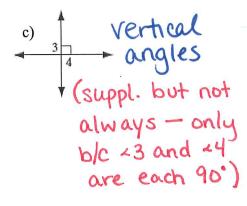
$$\frac{\text{rise}}{\text{run}} = \frac{-8}{4} = -2$$

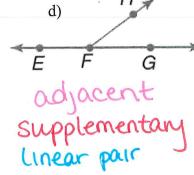
12) Find the coordinate of the endpoint S if T is the midpoint of RS and T(3, 4) and R(-2, 3).

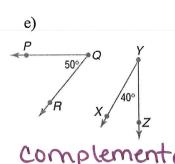
STUDY THIS!!

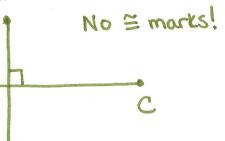

$$-\frac{2+x}{2}=3$$


$$-2+x=6$$

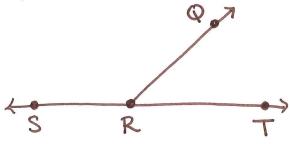

$$3+y=8$$

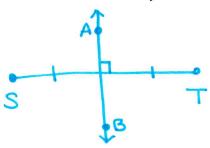

$$y=5$$

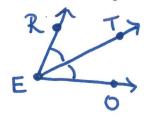

13) Classify all that apply: adjacent, vertical, linear pairs, complementary, supplementary, right angle and/or congruent.

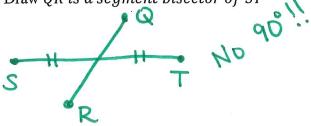


adjacent supplementary linear pair


_{14) Draw} $\overline{FE} \perp \overline{DC}$


15) Draw $\overline{WX} \cong \overline{YZ}$


16) Draw < QRS and < QRT are a linear pair


17) Draw \overrightarrow{AB} is $a \perp bisector \ of \ \overline{ST}$

18) Draw \overrightarrow{ET} is an angle bisector of $\angle REO$

19) Draw \overline{QR} is a segment bisector of \overline{ST}

