Name	•	

*Magnitude is another term for: Length

*The <u>direction</u> of a vector is found by measuring the angle that the vector forms with the positive x-axis or any other <u>Norizontal line</u>.

Vector. Label points R and T.

RT Where R is the Intial point
And T is the terminal point.

We could also use \vec{v} .

The vector above is in standard position because its initial point is at the <u>origin</u>.

We can also use **component funct** to describe our vector.

$$\overrightarrow{RT} = < x_2 - x_1, y_2 - y_1 >$$

What is the **Component form** of the vector?

R(0,0) and T(5,3)

$$\overrightarrow{RT} = \langle 5 - 0 , 3 - 0 \rangle$$

$$\overrightarrow{RT} = \langle 5 \rangle$$

Ex. 1 continued

To find the magnitude of a vector, use the distance formula or the Pythagorean Thm.

Find the MAGNITUDE:

$$5^2 + 3^2 = x^2$$

 $25 + 9 = x^2$
 $434 = 1x^4$

The direction of a vector is found by measuring the angle that the vector forms with any positive Xaxis or

any horizontal line

Find the DIRECTION:

$$\tan \theta = \frac{3}{5}$$

Example 2. Find the component form, the magnitude and the direction of \overrightarrow{ST} for S(-3,-2) and T(4,-7).

Component Form:

Component Form:
$$(-2) = (7, -5)$$

Magnitude:

agnitude:

$$x^2 = 5^2 + 7^2$$

 $x^2 = 25 + 49$
 $\sqrt{x^2} = 174$

0 = 54.5°

Example 3. Find the component form, the magnitude and the direction of \overrightarrow{AB} for A(1,-3) and B(3,3).

Component Form:

Magnitude:

Direction:

Example 4. Graph the standard position then find the magnitude and the direction of $\overrightarrow{\textit{CD}} = <2.6>$

Magnitude:

$$X^{2} = 2^{2} + 6^{2}$$

 $X^{2} = 4 + 36$ $X = 2\sqrt{10}$
 $X^{2} = 40$
Direction:

tan
$$\theta = \frac{6}{3}$$

$$\theta = 71.6^{\circ}$$

With your neighbor, what are the similarities and differences between Example 3 and 4? ___

Using vectors to describe translations

Translation $(x,y) \rightarrow (x+3,y-4)$ Can be written in vector form as:

$$\vec{v} = <3, -4>$$

Example 1. Graph \triangle ABC with vertices A(-3,-1), B(-1,-2) and C(-3,-3) under the translation $\vec{v}=<4,3>$. This means:

$$(x,y) \to (x+4, y+3)$$
right 4, up 3
$$A(-3,-1) \to A^{1}(1,2)$$

$$B(-1,-2) \to B^{1}(3,1)$$

$$C(-3,-3) \to C^{1}(1,0)$$

Example 2. Graph Δ HJK with vertices H(-4,4), J(-2,4) and K(-1,2) under the translation $\vec{v} = <-2,-1>$. **This means:**

Left 2, down 1

$$H(-4,4) \rightarrow H'(-6,3)$$
 $J(-2,4) \rightarrow J'(-4,3)$
 $K(-1,2) \rightarrow K'(-3,1)$